S. 2 Mathematics | Binomial Products

A binomial is an expression with two terms. E.g. $a+b, 2 x+3,2+a$, etc.
An expression with two or more terms may be written with brackets as $(a+b),(2 x+3),(2+a)$.
Recall $\mathbf{a}(\mathrm{b}+\mathbf{c})=\mathbf{a b}+\mathbf{a c}$
The factor multiplies the two terms in the brackets.
What about $(a+b)(c+d)$?
The figure below illustrates $(a+b)(c+d)$.

Area of rectangle PQRS in $(a+b)(c+d)$ 1

But PQRS may be divided into rectangles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D

Area $\mathrm{A}=\mathrm{axc}=\mathrm{ac}$
Area $B=a x d=a d$
Area c $=b \times c=b c$
Area $D=b x d=b d$
Therefore Area of PQRS $=a c+a d+b c+b d$ \qquad 2

From 1 and 2 above,
$(a+b)(c+d)=a c+a d+b c+b d$.
Note that, when we expand the above expression, each of the terms in the first pair of brackets multiplies the terms in the second pair of brackets.
i.e

$$
\begin{aligned}
(a+b)(c+d) & =a(c+d)+b(c+d) \\
& =a c+a d+b c+b d
\end{aligned}
$$

Therefore $(a+b)(c+d)=a c+a d+b c+b d$
When the first pair of brackets is removed, the second term goes with its sign (check $\mathbf{+ b}$ above). If \boldsymbol{b} had been negative, it would carry its negative sign.

Example 1:

Expand i) $(p+q)(r+2 s)$
ii) $(w-2 x)(3 y+z)$
iii) $(2 e+3 f)(4 f-g)$

Solution
i) $(\mathbf{p}+\mathbf{q})(r+2 s)=p(r+2 s)+q(r+2 s)$
$=p r+2 p s+q r+2 q s$
ii) $(w-2 x)(3 y+z)=w(3 y+z)-2 x(3 y+z)$

$$
=3 w y+w z-6 x y+2 x z
$$

iii) $(2 e+3 f)(4 f-g)=2 e(4 f-g)+3 f(4 f-g)$

$$
=8 \mathrm{ef}-2 \mathrm{eg}+12 f^{2}-3 \mathrm{fg}
$$

There are no like terms in each of the expanded expressions in (i), (ii) and (iii). So the expressions cannot be simplified.

Example 2

Expand and simplify
i) $(2 p-q)(2 p+q)$
ii) $(x+2 y)(2 x-y)+3 x(x-y)$

Solution

$$
\text { i) } \left.\begin{array}{rl}
(2 p-q)(2 p+q) & =2 p(2 p+q)-q(2 p+q) \\
& =4 p^{2}+2 p q-2 p q-q^{2} \\
& =4 p^{2}-q^{2}
\end{array} \quad \text { (But } 2 p q-2 p q=0\right)
$$

ii) $(x+2 y)(2 x-y)+3 x(x-y)$

$$
=x(2 x-y)+2 y(2 x-y)+3 x(x-y)
$$

$$
=2 x^{2}-x y+4 x y-2 y^{2}+3 x^{2}-3 x y
$$

$$
=2 x^{2}+3 x^{2}+4 x y-x y-3 x y-2 y^{2}
$$

$=5 x^{2}-2 y^{2}$

EXERCISE

1) Expand the products
a) $(n+2 p)(2 n+3)$
b) $(2 t+u)(v+3 w)$
c) $(3 e+2 f)(g-h)$
d) $(2 w-x)(3 x+2 y)$
e) $(4 p-q)(p+2)$
f) $(2 u-3 v)(v+4 w)$
2) Expand the products and then simplify them by collecting like terms.
a) $(a+2 b)(2 a+b)$
b) $(e+4 f)(2 e-5 f)$
c) $(3 h-4)(4+3 h)$
d) $(2 x+y)^{2}$
e) $(2 x-y)^{2}$
f) $(2 x+3)(3 x-4)+(6-x)$
3)Expand the products, then simplify them by collecting like terms.
a) $(a+b)^{2}$
b) $(2 x+3)^{2}$
c) $(x-y)^{2}$
d) $(2 a-b)^{2}$
e) $(a+b)(a-b)$
f) $(2 x-y)(2 x+y)$

The three Identities

Square of the sum of two terms

1) $(a+b)^{2}=(a+b)(a+b)$

$$
\begin{align*}
& =a(a+b)+b(a+b) \\
& =a^{2}+a b+a b+b^{2} \\
& =a^{2}+2 a b+b^{2} \tag{i}
\end{align*}
$$

Therefore $(a+b)=a^{2}+2 a b+b^{2}$

Square of the difference of two terms

2) $(a-b)^{2}=(a-b)(a-b)$

$$
\begin{align*}
& =a(a-b)-b(a-b) \\
& =a^{2}-a b-a b+b^{2} \\
& =a^{2}-2 a b+b^{2} \tag{ii}
\end{align*}
$$

Therefore $(a-b)^{2}=a^{2}-2 a b+b^{2}$.
Difference of two squares
3) $(a+b)(a-b)=a(a-b)+b(a-b)$

$$
\begin{align*}
& =a^{2}-a b+a b-b^{2} \\
& =a^{2}-b^{2} \tag{iiii}
\end{align*}
$$

Therefore $(a+b)(a-b)=a^{2}-b^{2}$.

Example 1:

Select an appropriate identity and use it to evaluate;
i) 51^{2}
ii) $\left(13 \frac{1}{2}\right)^{2}$
iii) 49^{2}
iv) 2.95^{2}
v) 9×11

Solutions

i) Let 51 be $=50+1$

$$
51^{2}=(50+1)^{2}
$$

Use $(a+b)^{2}=a^{2}+2 a b+b^{2}$
Where $a=50$ and $b=1$

$$
\begin{aligned}
(50+1)^{2} & =50^{2}+2(50)(1)+1^{2} \\
& =2500+100+1 \\
& =2601
\end{aligned}
$$

ii) $\left(13 \frac{1}{2}\right)^{2}=\left(13+\frac{1}{2}\right)^{2}$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
where $\mathrm{a}=13$ and $\mathrm{b}=\frac{1}{2}$

$$
\begin{aligned}
& \left(13+\frac{1}{2}\right)^{2}= \\
= & 169+13+\frac{1}{4} \\
= & 182 \frac{1}{2}
\end{aligned}
$$

iii) $49^{2}=(50-1)^{2}$

$$
(a-b)=a^{2}-2 a b+b^{2}
$$

where $a=50$ and $b=1$

$$
\begin{aligned}
(50-1)^{2} & =50^{2}-2(50)(1)+1^{2} \\
& =2500-100+1 \\
& =2401
\end{aligned}
$$

iv) $2.95^{2}=(3-0.05)^{2}$
$(a-b)=a^{2}-2 a b+b^{2}$
where $\mathrm{a}=3$ and $\mathrm{b}=0.05$

$$
(3-0.05)^{2}=3^{2}-2(3)(0.05)+(0.05)
$$

$$
\begin{aligned}
& =9-0.3+0.0025 \\
& =8.7025
\end{aligned}
$$

v) 9×11

$$
\begin{array}{rl}
(a-b)(a+b)=a^{2}-b^{2} \\
20=2 a & 2 b=2 \\
a=10 & =20 \\
(a-b)+(a+b) & =11+9 \\
2 a & =10 \\
a & =2 \\
(a+b)-(a-b) & =11-9 \\
2 b & =2 \\
b & =1
\end{array}
$$

Therefore $(10-1)(10+1)=10^{2}-1^{2}$

$$
\begin{aligned}
& =100-1 \\
& =99
\end{aligned}
$$

Example 2:

Choose the appropriate identity and use it to expand the following.
a)

