Area

Area is the size of a surface.
Formulae of the area of simple shapes

Triangle

Area $=1 / 2 \times b \times h$
b = base
$\mathrm{h}=$ vertical height

Parallelogram

Area $=b \times h$
$b=$ base
$\mathrm{h}=$ vertical height

Square

Area $=\mathrm{a}^{2}$
$a=$ length of side
digitalteachers.co.ug
Trapezium /trapezoid

Area $=1 / 2(a+b) \times h$
$h=$ vertical height

Rectangle

Area $=w \times h$ $\mathrm{w}=$ width $h=$ height

Circle

Area $=\pi \times r^{2}$

Example

Find the area of the base of cuboid below.

Revision Questions

1. In the diagram below, $A B C D: A D=t, B C=3 t$ and $A B=t$. If the area of $A B C D$ is $50 \mathrm{~cm}^{2}$ find the value of t.

2. The area of the rectangle below is $36 \mathrm{~cm}^{2}$ what is the width of the rectangle

3. In the diagram below, BCDE is a trapezium. $\mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{CD}=10 \mathrm{~cm}$. The area of the trapezium BCDE is $40 \mathrm{~cm}^{2}$.

(i) Calculate the area of triangle CDE.
(ii) Find the length of BE .
4. Okodel built a house with a floor as shown in the diagram below. He covered the floor with a mat. The cost of the mat is sh. 5000 per square metre.

How much did Okodel spend to cover the whole floor?
5. The figure below is that of rectangle. Use the information given to find the area of the rectangle.

6. The figure below is a trapezium. Find its area.

7. If the area of the figure $A B C D$ below is $60 \mathrm{~m}^{2}$, find the length of its diagonal $A C$.

8. A piece of cloth is laid on a table 90 cm long and 70 cm wide as shown in the figure below. The area covered by the piece of cloth is shaded.

a) Find the length and width of the piece of cloth.
b). Find the area of the table that is not covered by the piece of cloth.
9. Find the area of the shaded part in the figure ABCD below. (Take $\pi=\frac{22}{7}$)

10. Find the area of the parallelogram drawn below:

11. In the figure below, find the area of the shaded triangle

12. In the figure below, $P Q=Q R=28 \mathrm{Cm}$. Use it to answer the questions that follows.

a) Find the area of triangle PQR.
b) Find the area of the sector QST. (Take $\pi=22 / 7$)
c) What is the area of the shaded part?
13. Find the area of circle whose radius is 7 cm . (Take $\pi=\frac{22}{7}$)
14. Find the area of the trapezium below.

15. Find the area of the shaded top cover of the rectangular box below:

10 cm
16. Abdul cut out circular plates of diameter 7 cm from a rectangular sheet of metal of length 45 cm and width 35 cm shown below.

(a) How many circular plates did he cut out from the rectangular sheet?
(b) Find the area of the unused sheet after cutting out the circular plates (Take $\pi=\frac{22}{7}$)
17. In the triangle below $A B=12 \mathrm{~cm}, C E=10 \mathrm{~cm}$ and $A C=16 \mathrm{~cm}$. Use the triangle to find the length of DB

18. Find the area of the shaded part in the diagram below.

19. The diagram below is a rhombus $P Q R S$. Its perimeter is 80 cm . Diagonal $S Q$ is 24 cm long.
(a) Find the length of diagonal $P R$

(b) Find the area of the rhombus in cm^{2}
20. The figure below shown a semi -circle enclosed in a rectangle .use it to answer the question that follow.

(a) Find the area of the rectangle
(b) Work out the area of the unshaded part.
21. The radius of a wheel of bicycle is 35 cm . Find the circumference of the wheel. (Take $\pi=\frac{22}{7}$)
22. The diagram below shows a metallic drum which was cut open to form a door sheet, Use it to answer the question that follow.

(a) Find the length of the door which was made out of the sheet.

$$
\text { (Take } \pi=\frac{22}{7} \text {) }
$$

23. Find the area of the shaded part in the figure below.

24. The figure below is a trapezium where $\mathrm{AB}=\mathrm{AD}=14 \mathrm{~cm}, \mathrm{BC}=28 \mathrm{~cm}$ and ABD from a quarter of a circle.

Calculate the area of the shaded part (use $\pi=\frac{22}{7}$)

25. The figure below show a regular six- sided 8 cm long enclosed in circle of radius 5 cm . Triangle OAB of height 3 cm is part of the polygon.

(a) Find the area of the polygon
(b) Find the area of the shaded region. (Use $\pi=3.14$)
26. Find the area of the figure below.

27. Square tiles of side $=20 \mathrm{~cm} \mathrm{~cm}$ each were laid on the floor of a room measuring 600 cm by 400 cm .
a) Find the number of tiles needed to cover the floor.
b) If a box containing 25 tiles costs 30,000, find the total cost of tiles needed to covered the whole floor.
28. Find the area of the shaded part in the diagram below.
(Take π as $\frac{22}{7}$).
(6marks)

29. In the diagram, $A C=56 \mathrm{~cm}$ and $E C$ is half of $A C$. Find the area of the shaded part. (take $\pi=\frac{22}{7}$)

30. The diagram below shows a rhombus PQRS. The diagonal $P R=24 \mathrm{~cm}$ and $Q S=10 \mathrm{~cm}$

(a) Calculate the area of the rhombus
(b) Find the perimeter of the rhombus
(04 marks
31. Study the figure below and use it to answer the questions that follow.

(a) Calculate the area of the figure
(03mark)
(b) Work out the perimeter of the figure.
32. The diagram bellow shows a square BCDE enclosed in a circle with center O and radius 14 cm . Parts of the circle are shaded as shown. Study the diagram and use it to answer the questions that follow.

(a) Calculate the area of the circle. (Use $\pi=\frac{22}{7}$)
(02marks)
(b) Find the area of the shaded part.
(04 marks)
33. The area of a square flower garden is $196 \mathrm{~m}^{2}$. Find the length of each side
34. The figure below represents a rectangular floor which is covered by square tiles of area $400 \mathrm{~cm}^{2}$ each. Use it to answer the questions that follow.

(a) Find the area of the rectangular floor. (02 marks)
(b) Calculate the perimeter of the rectangular floor (04 marks)

Suggested answers

1. In the diagram below, $A B C D: A D=t, B C=3 t$ and $A B=t$. If the area of $A B C D$ is $50 \mathrm{~cm}^{2}$ find the value of t.

$$
\begin{aligned}
& \text { Area of trapezium }=\frac{1}{2} A B x(B C+A D) \\
& 50
\end{aligned} \begin{aligned}
50 & \frac{1}{2} t(t+3 t) \\
50 & =2 \mathrm{t}^{2} \\
\mathrm{t} & =5
\end{aligned}
$$

2. The area of the rectangle below is $36 \mathrm{~cm}^{2}$ what is the width of the rectangle

$$
\begin{aligned}
\text { Area }=\text { length } x \text { width } & =36 \mathrm{~cm}^{2} \\
9 \times \text { width } & =36 \mathrm{~cm}^{2}
\end{aligned}
$$

Divide by 9 throughout

$$
\text { Width }=4 \mathrm{~cm}
$$

3. In the diagram below, BCDE is a trapezium. $\mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{CD}=10 \mathrm{~cm}$. The area of the trapezium BCDE is $40 \mathrm{~cm}^{2}$.

(iii) Calculate the area of triangle CDE.

$$
\begin{aligned}
\text { Area of the triangle } \mathrm{CDE} & =\frac{1}{2} \times C D \times C B \\
& =\frac{1}{2} \times 10 \times 5 \\
& =25 \mathrm{~cm}^{2}
\end{aligned}
$$

(iv) Find the length of $B E$.

$$
\begin{aligned}
\text { Area of the triangle } \mathrm{BCE}=\frac{1}{2} \times B E \times C B & =40-25 \\
=\frac{1}{2} \times 5 \times B E & =15 \\
\mathrm{BE} & =\frac{15 \times 2}{5} \\
& =6 \mathrm{~cm}
\end{aligned}
$$

4. Okodel built a house with a floor as shown in the diagram below. He covered the floor with a mat. The cost of the mat is sh. 5000 per square metre.

How much did Okodel spend to cover the whole floor?

$B N=K C=3 \mathrm{~cm}$
$B C=3+5+3=11 \mathrm{~cm}$
From Pythagoras theorem

$$
\mathrm{BN}^{2}+\mathrm{AN}^{2}=\mathrm{BA}^{2}
$$

$$
3^{2}+A N^{2}=5^{2}
$$

$$
\mathrm{AN}=\sqrt{(25-9)}=\sqrt{16}=4 \mathrm{~cm}
$$

$$
\text { Area }=\frac{1}{2} A N(A D+B C)
$$

$$
=\frac{1}{2} \times 4(5+11)=32 \mathrm{~m}^{2}
$$

5. The figure below is that of rectangle. Use the information given to find the area of the rectangle.

$(3 \mathrm{p}+1) \mathrm{mm}$	$(3 \mathrm{p}-1) \mathrm{cm}$	Value of p $(3 p+1)=(p+9)$	$\begin{aligned} \text { Length } & =3 \times 4+1 \\ & =13 \mathrm{~cm} \end{aligned}$
		Collecting like terms $3 p-p=9-1$	$\begin{aligned} \text { Width } & =3 \times 4-1 \\ & =11 \mathrm{~cm} \end{aligned}$
		$2 p=8$	Area $=$ length x width
$(\mathrm{p}+9) \mathrm{cm}$		$p=4$	$13 \times 11=143 \mathrm{~cm}^{2}$

6. The figure below is a trapezium. Find its area.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} h(a+b) \\
& =\frac{1}{2} \times 3(5+7) \\
& =18 \mathrm{~cm}^{2}
\end{aligned}
$$

7. If the area of the figure $A B C D$ below is $60 \mathrm{~m}^{2}$, find the length of its diagonal $A C$.

$$
\begin{aligned}
& A r e a=L \times W \\
& 60=12 \times W \\
& A D=W=5 \mathrm{~cm} \\
& \text { Using Pythagoras theorem } \\
& A C^{2}={A D^{2}+D C^{2}}_{A C^{2}=5^{2}+12^{2}=25+144=169}^{A C=\sqrt{169}=13}
\end{aligned}
$$

8. A piece of cloth is laid on a table 90 cm long and 70 cm wide as shown in the figure below. The area covered by the piece of cloth is shaded.

70 cm
c) Find the length and width of the piece of cloth.

Width of piece of cloth $=70-(7+7)=56 \mathrm{~cm}$

Length of piece of cloth $=90-(8+8)=74 \mathrm{~cm}$
b). Find the area of the table that is not covered by the piece of cloth.

Area of the table $=L \times W=90 \times 70$	$=6300 \mathrm{~cm}^{2}$
Area of the cloth $=L \times W=74 \times 56$	$=4144 \mathrm{~cm}^{2}$
Area uncovered (= difference)	$=2156 \mathrm{~cm}^{2}$

9. Find the area of the shaded part in the figure $A B C D$ below. (Take $\pi=\frac{22}{7}$)

Area of shaded part = area of rectangle - area of semicircle

$$
\begin{aligned}
& =(\mathrm{L} \times \mathrm{W})-\left(\frac{1}{2} \pi r^{2}\right) \\
& =(20 \times 14)-\left(\frac{1}{2} \times \frac{22}{7} \times \frac{14}{2} \times \frac{14}{2}\right) \\
& =280-77 \\
& =203 \mathrm{~cm}^{2}
\end{aligned}
$$

10. Find the area of the parallelogram drawn below:

$$
\begin{aligned}
\text { Area of parallelogram } & =\mathrm{L} \times \mathrm{h} \\
& =10 \times 6 \\
& =60 \mathrm{~cm}^{2}
\end{aligned}
$$

11. In the figure below, find the area of the shaded triangle

Using Pythagoras theorem

$$
\begin{aligned}
h^{2}+(4+2)^{2} & =10^{2} \\
h^{2}+36 & =100 \\
h^{2} & =100-36=64 \\
h & =\sqrt{64}=8
\end{aligned}
$$

Area of shaded part = area of triangle YWP - area of the triangle WXP

$$
\begin{aligned}
& =\frac{1}{2} \times(4+2) \times 8-\frac{1}{2} \times 2 \times 8 \\
& =24-8=16
\end{aligned}
$$

12. In the figure below, $\mathrm{PQ}=\mathrm{QR}=28 \mathrm{Cm}$. Use it to answer the questions that follows.

d) Find the area of triangle $P Q R$.

$$
\begin{aligned}
\text { Area of a triangle } & =\frac{1}{2} b h \\
& =\frac{1}{2} \times 28 \times 28 \\
& =14 \times 28 \\
& =392 \mathrm{~cm}^{2}
\end{aligned}
$$

e) Find the area of the sector QST. (Take $\pi=22 / 7$)

$$
\begin{aligned}
\text { Area of QRT } & =\frac{1}{4} \times \pi r^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 14 \times 14 \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

f) What is the area of the shaded part?

Area of shaded part = area of triangle - area of unshaded part

$$
\begin{aligned}
& =392-154 \\
& =238 \mathrm{~cm}^{2}
\end{aligned}
$$

13. Find the area of circle whose radius is 7 cm . (Take $\pi=\frac{22}{7}$)

$$
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& =\frac{22}{7} \times 7 \times 7 \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

14. Find the area of the trapezium below.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} h(a+b) \\
& =\frac{1}{2} \times 4(8+4) \\
& =24 \mathrm{~cm}^{2}
\end{aligned}
$$

15. Find the area of the shaded top cover of the rectangular box below:

$$
\begin{aligned}
\text { Area } & =\mathrm{L} \times \mathrm{W} \\
& =10 \times 6 \\
& =60 \mathrm{~cm}^{3}
\end{aligned}
$$

16. Abdul cut out circular plates of diameter 7 cm from a rectangular sheet of metal of length 45 cm and width 35 cm shown below.

(c) How many circular plates did he cut out from the rectangular sheet?

He cut $6 \times 5=30$ circular plates
(d) Find the area of the unused sheet after cutting out the circular plates (Take $\pi=\frac{22}{7}$)

Area of the metal sheet $=45 \times 35=1575 \mathrm{~cm}^{2}$
Area of a circular plate $=\pi r^{2}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=38.5 \mathrm{~cm}^{2}$
Area of 30 circular plate $=30 \times 38.5=1155 \mathrm{~cm}^{2}$
Area of unused part $=1575-1155$

$$
=420 \mathrm{~cm}^{2}
$$

17. In the triangle below $A B=12 \mathrm{~cm}, C E=10 \mathrm{~cm}$ and $A C=16 \mathrm{~cm}$. Use the triangle to find the length of $D B$

Answer

$$
\begin{aligned}
\text { Area of triangle } \mathrm{ABC} & =\frac{1}{2} \times A C \times B D \\
& =\frac{1}{2} \times A B \times C E \\
& =\frac{1}{2} \times 16 \times B D=\frac{1}{2} \times 12 \times 10 \\
\mathrm{BD} & =7.5 \mathrm{~cm}
\end{aligned}
$$

18. Find the area of the shaded part in the diagram below.

$$
\begin{aligned}
\text { Area of shaded area } & =\frac{3}{4} \pi r^{2} \\
& =\frac{3}{4} \times \frac{22}{7} \times 7 \times 7 \\
& =115.5 \mathrm{~cm}^{2}
\end{aligned}
$$

19. The diagram below is a rhombus $P Q R S$. Its perimeter is 80 cm . Diagonal $S Q$ is 24 cm long.
(c) Find the length of diagonal $P R$

Side of rhombus $=\frac{80}{4}=20$
$O Q=\frac{S Q}{2}=\frac{24}{2}=12 \mathrm{~cm}$
From Pythagoras theorem

$$
\begin{aligned}
& P Q^{2}=O Q^{2}+O P^{2} \\
& 20^{2}=12^{2}+O P^{2} \\
& O P=\sqrt{(400-144)} \\
& O P=16 \\
& P R=2 O P=2 \times 16=32
\end{aligned}
$$

(d) Find the area of the rhombus in cm^{2}

$$
\begin{aligned}
\text { Area of the rhombus } & =2 \times \text { area of PSR } \\
& =2 \times \frac{1}{2} \times 24 \times 16 \\
& =384 \mathrm{~cm}^{2}
\end{aligned}
$$

20. The figure below shown a semi-circle enclosed in a rectangle .use it to answer the question that follow.

(c) Find the area of the rectangle

$$
\begin{aligned}
\text { Area of a rectangle } & =\mathrm{L} \times \mathrm{W} \\
& =14 \times 7 \\
& =98 \mathrm{~m}^{2}
\end{aligned}
$$

(d) Work out the area of the unshaded part.

$$
\begin{aligned}
\text { Area of shaded semicircle } & =\frac{1}{2} \pi r^{2} \\
& =\frac{1}{2} \times \frac{22}{7} \times 7 \times 7 \\
& =77 \mathrm{~m}^{2}
\end{aligned}
$$

Area of unshaded part = Area of rectangle - Area of shaded semicircle

$$
\begin{aligned}
& =(98-77) \mathrm{m}^{2} \\
& =21 \mathrm{~m}^{2}
\end{aligned}
$$

21. The radius of a wheel of bicycle is 35 cm . Find the circumference of the wheel.
(Take $\pi=\frac{22}{7}$)

$$
\mathrm{C}=2 \pi r=2 \times \frac{22}{7} \times 35=220 m
$$

22. The diagram below shows a metallic drum which was cut open to form a door sheet, Use it to answer the question that follow.

(c) Find the length of the door which was made out of the sheet.
(Take $\pi=\frac{22}{7}$)
(03 marks)

The length of the drum = circumference of the circle

$$
\begin{aligned}
& =\pi D \\
& =\frac{22}{7} \times 63 \\
& =198 \mathrm{~cm}
\end{aligned}
$$

(d) Work out the area of the door in meters

80 cm

$$
\begin{aligned}
\text { Area } & =L \times W \\
& =80 \times 198 \\
& =15840 \mathrm{~cm}^{2}
\end{aligned}
$$

23. Find the area of the shaded part in the figure below.

$$
\begin{aligned}
& \begin{aligned}
& A C^{2}+C D^{2}=A C^{2} \text { (Pythagoras theorem) } \\
& \begin{aligned}
3^{2}+C D^{2} & =5^{2} \\
C D^{2} & =25-9 \\
& =16
\end{aligned} \\
& \qquad C D=\sqrt{16}=4 \mathrm{~cm}
\end{aligned} \\
& \text { Area }=\frac{1}{2} \times A C \times C D=\frac{1}{2} \times 4 \times 3=2 \times 3=6 \mathrm{~cm}^{2}
\end{aligned}
$$

24. The figure below is a trapezium where $\mathrm{AB}=\mathrm{AD}=14 \mathrm{~cm}, \mathrm{BC}=28 \mathrm{~cm}$ and ABD from a quarter of a circle.
Calculate the area of the shaded part (use $\pi=\frac{22}{7}$)

Area of shaded area $=$ Area of $\mathrm{ABCD}-$ Area of ABD

$$
\begin{aligned}
& =\frac{1}{2} h(a+b)-\frac{1}{4} \pi r^{2} \\
& =\frac{1}{2} \times 14(14+28)-\frac{1}{4} \pi \times 14^{2}=294-154=140 \mathrm{~cm}^{2}
\end{aligned}
$$

25. The figure below show a regular six- sided 8 cm long enclosed in circle of radius 5 cm . Triangle OAB of height 3 cm is part of the polygon.

(a) Find the area of the polygon

Area of the polygon $=$ area of $\mathrm{AOB} \times 6$

$$
=\left(\frac{1}{2} \times 8 \times 3\right) \times 6=72 \mathrm{~cm}^{2}
$$

(b) Find the area of the shaded region. (Use $\pi=3.14$)

Area of shaded part $=$ Area of circle - area of polygon

$$
\begin{aligned}
& =\pi r^{2}-72 \\
& =\pi x 5^{2}-74=78.5-17 \\
& =6.5 \mathrm{~cm}^{2}
\end{aligned}
$$

26.Find the area of the figure below.

The figure is a parallelogram
Area of parallel gram $=$ base x perpendicular height

$$
\begin{aligned}
& =13 \times 5 \\
& =65 \mathrm{~m}^{2}
\end{aligned}
$$

27. Square tiles of side $=20 \mathrm{~cm} \mathrm{~cm}$ each were laid on the floor of a room measuring 600 cm by 400 cm .
a) Find the number of tiles needed to cover the floor.
(03 marks)
Area of the floor $=600 \times 400=240000 \mathrm{~cm}^{2}$
Area of a single tile $=20 \times 20 \mathrm{~cm}^{2}=400 \mathrm{~cm}^{2}$
$400 \mathrm{~cm}^{2}$ are covered by 1 tile
$240000 \mathrm{~cm}^{2}$ are covered by $\frac{1 \times 240000}{400}=600$ tile
b) If a box containing 25 tiles costs 30,000 , find the total cost of tiles needed to covered the whole floor.

Required to find the cost per tile then find the cost of 600tile
25 tile cost 30000
1tile costs $\frac{30000}{25}=1200$

600 tiles cost $1200 \times 600=$ shs. 720000
Hence, 600 tiles cost shs. 720000
28. Find the area of the shaded part in the diagram below.
(Take π as $\frac{22}{7}$).
(6marks)

Area of circle $=\pi r^{2}=\frac{22}{7} \times \frac{14}{2} \times \frac{14}{2}=154 \mathrm{~cm}^{2}$
Area of trapezium $=\frac{1}{2} h(a+b)=\frac{1}{2} \times 14(14+25)=273 \mathrm{~cm}^{2}$
Shaded part $=273-154=119 \mathrm{~cm}^{2}$.
29. In the diagram, $\mathrm{AC}=56 \mathrm{~cm}$ and EC is half of AC . Find the area of the shaded part. (take $\pi=\frac{22}{7}$)

Radius of big circle $=\frac{56}{2}=28 \mathrm{~cm}$
Area of big semi-cycle $=\frac{1}{2} \pi r^{2}=\frac{22 \times 28 \times 28}{2 \times 7}=1232 \mathrm{~cm}^{2}$
Radius of small semi-circle $=\frac{28}{2}=14 \mathrm{~cm}$
Area of small semi-cycle $=\frac{1}{2} \pi r^{2}=\frac{22 \times 14 \times 14}{2 \times 7}=308 \mathrm{~cm}^{2}$
Area of shaded part $=1232-308=924 \mathrm{~cm}^{2}$
30. The diagram below shows a rhombus $P Q R S$. The diagonal $P R=24 \mathrm{~cm}$ and $Q S=10 \mathrm{~cm}$

(c) Calculate the area of the rhombus

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \times \mathrm{d}_{1} \times \mathrm{d}_{2}=\frac{1}{2} \times 24 \times 10=120 \\
& \text { Or Area }=4\left(\frac{1}{2}(b x h)\right)=4 \times \frac{1}{2} \times 5 \times 12=120 \mathrm{~cm}^{2}
\end{aligned}
$$

(d) Find the perimeter of the rhombus
(04 marks

Applying Pythagoras theorem

$$
(\text { side })^{2}=5^{2}+12^{2} \text { or side }=\sqrt{ }\left(5^{2}+12^{2}\right)=13
$$

$$
\text { Perimeter of rhombus }=4 \times \text { side }=4 \times 13=52
$$

31. Study the figure below and use it to answer the questions that follow.

(c) Calculate the area of the figure

$$
\begin{aligned}
\text { Total area } & =\text { Area of } A+\text { Area of } B \\
& =L \times B+1 / 2 b h \\
& =(7 \times 9)+1 / 2(4 \times 3) \\
& =63+6 \\
& =69 \mathrm{~cm}^{2}
\end{aligned}
$$

(d) Work out the perimeter of the figure.

First, we find the value of X using Pythagoras theorem

$$
x=\sqrt{4^{2}+3^{2}}=5 m
$$

$$
\text { Perimeter }=10+5+5+7+9=36 \mathrm{~m}
$$

32. The diagram bellow shows a square BCDE enclosed in a circle with center O and radius 14 cm . Parts of the circle are shaded as shown. Study the diagram and use it to answer the questions that follow.

(c) Calculate the area of the circle. (Use $\pi=\frac{22}{7}$)
(02marks)

$$
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& =\frac{22 \times 14 \times 14}{7}=616 \mathrm{~cm}^{2}
\end{aligned}
$$

(d) Find the area of the shaded part.
(04 marks)

$$
\begin{aligned}
& \mathrm{DC}^{2}=14^{2} \times 14^{2} \\
& \begin{aligned}
& \mathrm{DC}=\sqrt{\left(14^{2} \times 14^{2}\right)}=19.8 \mathrm{~cm} \\
& \text { Area of unshaded part }=(\mathrm{DC})^{2} \\
&=19.8^{2} \\
&=392 \mathrm{~cm}^{2} \\
& \text { Area of shaded part }=(616-392) \\
&=224 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

33. The area of a square flower garden is $196 \mathrm{~m}^{2}$. Find the length of each side

Area of squares $=\mathrm{a}^{2}($ where $\mathrm{a}=$ length of 1 side $)$

$$
\begin{gathered}
a^{2}=196 m^{2} \\
a=14 m
\end{gathered}
$$

34. The figure below represents a rectangular floor which is covered by square tiles of area $400 \mathrm{~cm}^{2}$ each. Use it to answer the questions that follow.

(c) Find the area of the rectangular floor. (02 marks)

Area $=$ area of 1 tile x number of tiles

$$
=400 \times 6 \times 3=7200 \mathrm{~cm}^{2}
$$

(d) Calculate the perimeter of the rectangular floor (04 marks)

Length 1 of one side of a tile $=\sqrt{400}=20 \mathrm{~cm}$
Perimeter is equal to the number of sides of tile around the figure x length of a side

$$
18 \times 20=360 \mathrm{~cm}
$$

