VECTORS

Straight line in space

A straight line is uniquely determined in space if either;
we know one point on the straight line and its direction or two points on the straight line.
Vector equation of a line
The vector equation of a line is given by
$r=\boldsymbol{a}+\lambda A B$

$$
\begin{aligned}
r & =\boldsymbol{a}+\lambda A B \\
r & =a+\lambda d
\end{aligned}
$$

Where; $a=$ any point on the line
$d=$ directional vector of the line.
The Cartesian equation is given by;

$$
\frac{x-x_{o}}{a}=\frac{y-y_{o}}{b}=\frac{z-z_{o}}{c}=\lambda
$$

Where a, b and c are direction vectors

Example 1

Find the vector and Cartesian equation of a line passing through $3 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k}$ and is parallel to $3 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k}$ Solution;
$r=a+\lambda d$
$r=\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$
Cartesian equation

$$
\begin{aligned}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right) \\
& x=3+3 \lambda \\
& y=-1-\lambda \\
& z=2+2 \lambda \\
& \frac{x-3}{3}=\lambda, \frac{y+1}{-1}=\lambda, \frac{z-2}{2}=\lambda \\
& \frac{x-3}{3}=\frac{y+1}{-1}=\frac{z-2}{2}=\lambda
\end{aligned}
$$

Example II

Find the vector and the Cartesian equation of a line passing through $\mathrm{A}(3,4,-7)$ and $\mathrm{B}(1,-1,6)$

Solution

$$
\begin{aligned}
& r=a+\lambda d \\
& d=A B=O B-O A \\
& \left(\begin{array}{c}
1 \\
-1 \\
6
\end{array}\right)-\left(\begin{array}{c}
3 \\
4 \\
-7
\end{array}\right)=\left(\begin{array}{l}
-2 \\
-5 \\
13
\end{array}\right) \\
& r=\left(\begin{array}{c}
3 \\
4 \\
-7
\end{array}\right)+\lambda\left(\begin{array}{l}
-2 \\
-5 \\
13
\end{array}\right) \text { (vector equation of line) } \\
& \left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 \\
4 \\
-7
\end{array}\right)+\lambda\left(\begin{array}{l}
-2 \\
-5 \\
13
\end{array}\right) \\
& x=3-2 \lambda \\
& y=4-5 \lambda \\
& z=-7+13 \lambda \\
& \frac{x-3}{-2}=\lambda \\
& \frac{y-4}{-5}=\lambda \\
& \frac{z+7}{13}=\lambda
\end{aligned}
$$

Cartesian equation
$\frac{x-3}{-2}=\frac{y-4}{-5}=\frac{z+7}{13}=\lambda$

Example III

Find the vector and Cartesian equation of a line passing through $(2,-1,1)$ and is parallel to the line whose equation $\frac{x-3}{2}=\frac{y+1}{7}=\frac{z-2}{-3}=\lambda$

Solution

Since the lines are parallel, it implies that they have the same parallel vectors.

$$
\begin{aligned}
& \boldsymbol{r}=a+\lambda d \\
& \boldsymbol{r}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
7 \\
-3
\end{array}\right)
\end{aligned}
$$

Cartesian equation:

$$
\begin{aligned}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
7 \\
-3
\end{array}\right) \\
& x-2=2 \lambda \Rightarrow \frac{x-2}{2}=\lambda \\
& y+1=7 \lambda \Rightarrow \frac{y+1}{7}=\lambda
\end{aligned}
$$

$$
\begin{aligned}
& z-1=-3 \lambda \Rightarrow \frac{z-1}{-3}=\lambda \\
& \frac{x-2}{2}=\frac{y+1}{7}=\frac{z-1}{-3}=\lambda
\end{aligned}
$$

Example III

Find the vector and Cartesian equations of the a line passing through the following points
(a) $5,-4,6)$ and $(3,7,2)$
(b) $(3,4,-7)$ and $(5,1,6)$

Solution

$r=a+\lambda A B$
$r=a+\lambda d$

$$
\boldsymbol{d}=\left(\begin{array}{l}
3 \\
7 \\
2
\end{array}\right)-\left(\begin{array}{c}
5 \\
-4 \\
6
\end{array}\right)=\left(\begin{array}{c}
-2 \\
11 \\
-4
\end{array}\right)
$$

(a) $\boldsymbol{r}=\left(\begin{array}{c}5 \\ -4 \\ 6\end{array}\right)-\lambda\left(\begin{array}{c}-2 \\ 11 \\ -4\end{array}\right)$

$$
\frac{x-5}{-2}=\frac{y+4}{11}=\frac{z-6}{-4}=\lambda
$$

(b) $\mathrm{A}(3,4,-7)$ and $\mathrm{B}(5,1,6)$

$$
r=a+\mu d
$$

$$
\boldsymbol{d}=\left(\begin{array}{l}
5 \\
1 \\
6
\end{array}\right)-\left(\begin{array}{c}
3 \\
4 \\
-7
\end{array}\right)
$$

$$
\boldsymbol{d}=\left(\begin{array}{c}
2 \\
-3 \\
13
\end{array}\right)
$$

$$
\boldsymbol{r}=\left(\begin{array}{c}
3 \\
4 \\
-7
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
-3 \\
13
\end{array}\right)
$$

$$
\frac{x-3}{2}=\frac{y-4}{-3}=\frac{z+7}{13}=\lambda
$$

Example IV

Find the coordinates of the point where the line joining the points $(2,3,1)$ and $(3,-4-5)$ meets the $x-y$ plane

$$
\begin{aligned}
& \boldsymbol{r}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-7 \\
-6
\end{array}\right) \\
& x=2+\lambda \\
& y=3-7 \lambda \\
& z=1-6 \lambda
\end{aligned}
$$

For the line to meet the $x-y$ plane, $z=0$

$$
\begin{aligned}
& 0=1-6 \lambda \\
& \lambda=\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
& x=2+\frac{1}{6} \\
& x=\frac{13}{6} \\
& y=3-\frac{7}{6} \\
& y=\frac{11}{6}
\end{aligned}
$$

The coordinates are $\left(\frac{13}{6}, \frac{11}{6}, 0\right)$

Example V

Show that $4 \mathbf{i}-\mathbf{j}-12 \mathbf{k}$ lies on the line

$$
\boldsymbol{r}=2 \boldsymbol{i}+3 \boldsymbol{j}+4 \boldsymbol{k}+\lambda(\boldsymbol{i}-\mathbf{2} \boldsymbol{j}+4 \boldsymbol{k}
$$

Solution

$$
\begin{aligned}
& \boldsymbol{r}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) \\
& (4,-1,12) \\
& \left(\begin{array}{c}
4 \\
-1 \\
12
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right) \\
& 4=2+\lambda \Rightarrow \lambda=2 \\
& -1=3-2 \lambda \Rightarrow \lambda=2 \text { and } \\
& 12=4+4 \lambda \Rightarrow \lambda=2
\end{aligned}
$$

\therefore The point lies on the line since the values of μ are the same.

Example V

The points A, B, C have position vectors
$\left(\begin{array}{c}-4 \\ 5 \\ -1\end{array}\right),\left(\begin{array}{l}5 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}8 \\ 1 \\ 7\end{array}\right)$. Find which of the three points lie in the line $\boldsymbol{r}=\left(\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$

Solution

$$
\boldsymbol{r}=\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

For $A, \boldsymbol{r}=\left(\begin{array}{c}-4 \\ 5 \\ -1\end{array}\right)$

$$
\begin{aligned}
& \qquad\left(\begin{array}{c}
-4 \\
5 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right) \\
& -4=-1+3 \lambda \Rightarrow \lambda=-1 \\
& 5=4-\lambda \Rightarrow \lambda=-1 \\
& -1=1+2 \lambda \Rightarrow \lambda=-1 \\
& \Rightarrow\left(\begin{array}{c}
-4 \\
5 \\
-1
\end{array}\right) \text { lies on the line. }
\end{aligned}
$$

For B, $\left(\begin{array}{l}5 \\ 2 \\ 3\end{array}\right)$

$$
\boldsymbol{r}=\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

$$
\left(\begin{array}{l}
5 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

$5=-1+3 \lambda \Rightarrow \lambda=2$
$2=4-\lambda \Rightarrow \lambda=2$
$3=1+2 \lambda \Rightarrow \lambda=1$
Since the values of λ are not the same, point B does not lie on the line.
For C, $\left(\begin{array}{l}8 \\ 1 \\ 7\end{array}\right)$

$$
\begin{aligned}
& r=\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right) \\
& \left(\begin{array}{l}
8 \\
1 \\
7
\end{array}\right)=\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right) \\
& 8=-1+3 \lambda \Rightarrow \lambda=3 \\
& 1=4-\lambda \Rightarrow \lambda=3 \\
& 7=1+2 \lambda \Rightarrow \lambda=3
\end{aligned}
$$

\Rightarrow Since the vales of λ are the same, point C lies on the line.

Angle between two lines

The angle between two lines is the angle between their directional vectors

Consider two lines L_{1} and L_{2} with vector equations
$r=a+\lambda d_{1}$ and $r=b+\mu d_{2}$ respectively
The angle between the two lines is given by the formula $\frac{d_{1} \cdot d_{2}}{\left|d_{1}\right|\left|d_{2}\right|}$

Examples

1. Find the angle between the lines;
$\boldsymbol{r}=3 \boldsymbol{i}+2 \boldsymbol{j}-4 \boldsymbol{k}+\lambda(\boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k})$
$\boldsymbol{r}=5 \boldsymbol{i}-2 \boldsymbol{j}+\mu(3 \boldsymbol{i}+2 \boldsymbol{j}+6 \boldsymbol{k})$
$\boldsymbol{a} . \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \boldsymbol{\theta}$
$\cos \boldsymbol{\theta}=\frac{a . b}{|a||b|}$

$$
\cos \theta=\frac{d_{1} \cdot d_{2}}{\left|d_{1}\right|\left|d_{2}\right|}
$$

$$
\begin{aligned}
& d_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \quad d_{2}=\left(\begin{array}{l}
3 \\
2 \\
6
\end{array}\right) \\
& \cos \theta=\frac{\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
2 \\
6
\end{array}\right)}{\sqrt{1^{2}+2^{2}+2^{2}} \sqrt{3^{2}+2^{2}+6^{2}}} \\
& \cos \theta=\frac{3+4+12}{\sqrt{9} \sqrt{49}} \\
& \cos \theta=\frac{19}{21} \\
& \theta=\cos ^{-1}\left(\frac{19}{21}\right) \\
& \theta=25.2^{\circ}
\end{aligned}
$$

Example II

Find the angles between the lines

$$
\frac{x+4}{3}=\frac{y+1}{5}=\frac{z+3}{4} \& \frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}
$$

Solution

$$
\begin{aligned}
& \cos \theta=\frac{d_{1} \cdot d_{2}}{\left|d_{1}\right|\left|d_{2}\right|} \\
& d_{1}=\left(\begin{array}{l}
3 \\
5 \\
4
\end{array}\right), d_{2}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \\
& \cos \theta=\frac{\left(\begin{array}{l}
3 \\
5 \\
4
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)}{\sqrt{3^{2}+5^{2}+4^{2}} \sqrt{1^{2}+1^{2}+2^{2}}} \\
& \cos \theta=\frac{3+5+8}{(\sqrt{50}) \sqrt{6}} \\
& \cos \theta=\frac{16}{\sqrt{300}} \\
& \theta=\cos ^{-1}\left(\frac{16}{\sqrt{300}}\right) \\
& \theta=22.5^{\circ}
\end{aligned}
$$

Example III

Find the acute angle between the lines:

$$
\frac{x-1}{2}=\frac{y+2}{1}=\frac{z-2}{-1} \text { and } \frac{1-x}{2}=\frac{y-3}{1}=\frac{z-7}{2}
$$

Solution

$$
\begin{aligned}
\Rightarrow & \frac{x-1}{2}=\frac{y+2}{1}=\frac{z-2}{-1} \text { and } \frac{x-1}{-2}=\frac{y-3}{1}=\frac{z-7}{2} \\
\Rightarrow & \frac{x-1}{-2}=\frac{y-3}{1}=\frac{z-7}{2} \\
& \boldsymbol{d}_{\mathbf{1}}=\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right) \text { and } \boldsymbol{d}_{\mathbf{2}}=\left(\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right)
\end{aligned}
$$

$\cos \theta=\frac{d_{1} \cdot d_{2}}{\left|d_{1}\right| \cdot\left|d_{2}\right|}$
$\cos \theta=\frac{\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)}{\sqrt{2^{2}+1^{2}+(-1)^{2}} \sqrt{(-2)^{2}+1^{2}+(2)^{2}}}$
$\cos \theta=\frac{-4+1-2}{\sqrt{6} \cdot \sqrt{9}}$
\Rightarrow The acute angle between the two lines is 47.1°

Example IV

Find the angle between the lines:

$$
\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}=\lambda \text { and } \frac{x-5}{1}=\frac{y-1}{1}=\frac{z}{2}=\mu
$$

Solution

$$
\begin{aligned}
& \boldsymbol{d}_{1}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \text { and } \boldsymbol{d}_{2}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \\
& \cos \theta=\frac{d_{1} \cdot d_{2}}{\left|d_{1}\right| \cdot\left|d_{2}\right|} \\
& \cos \theta=\frac{\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)}{\sqrt{3^{2}+2^{2}+(1)^{2}} \sqrt{(1)^{2}+1^{2}+(2)^{2}}} \\
& \cos \theta=\frac{3+2+2}{\sqrt{14} \cdot \sqrt{6}} \\
& \theta
\end{aligned}
$$

\Rightarrow The acute angle between the two lines is 40.2°

Note: If two lines are perpendicular, then
 $$
\left(d_{1} \cdot d_{2}\right)=0
$$

Point of Intersection of two Lines

Example

Find the point of intersection of the lines $\frac{x}{1}=\frac{y+2}{2}=\frac{z-5}{-1} \& \frac{x-1}{-1}=\frac{y+3}{-3}=\frac{z-4}{1}$

Solution

$$
\begin{align*}
& \frac{x}{1}=\frac{y+2}{2}=\frac{z-5}{-1}=\lambda \ldots \tag{i}\\
& \frac{x-1}{-1}=\frac{y+3}{-3}=\frac{z-4}{1}=\mu \tag{ii}
\end{align*}
$$

From equation (i)

$$
\begin{align*}
& x=\lambda \ldots \ldots . \tag{iii}\\
& \frac{y+2}{2}=\lambda \\
& y+2=2 \lambda \\
& y=2 \lambda-2 \tag{iv}
\end{align*}
$$

$$
\begin{align*}
& \frac{z-5}{-1}=\lambda \\
& z-5=-\lambda \\
& z=-\lambda+5 \tag{v}
\end{align*}
$$

From equation (ii)

$$
\begin{align*}
& x=-\mu+1 \tag{vi}\\
& y+3=-3 \mu \\
& y=-3 \mu-3 \tag{vii}\\
& z=\mu+4 \tag{viii}\\
& \lambda=-\mu+1 \tag{*}\\
& 2 \lambda-2=-3 \mu-3 \\
& 2 \lambda+3 \mu=-1 \tag{**}
\end{align*}
$$

Substituting Eqn (*) in Eqn (${ }^{* *}$)

$$
\begin{aligned}
& 2(1-\mu)+3 \mu=-1 \\
& 2-2 \mu+3 \mu=-1 \\
& 2+\mu=-1 \\
& \mu=-3 \\
& \lambda=-\mu+1 \\
& \lambda=3+1 \\
& \lambda=4
\end{aligned}
$$

Equating Eqn (v) and Eqn (viii)
$-\lambda+5=\mu+4$
$-4+5=-3+4$
$1=1$
The two lines intersect

$$
\begin{aligned}
& x=4 \\
& y=2 \lambda-2 \\
& y=8-2 \\
& y=6 \\
& z=-4+5 \\
& z=-4+5=1
\end{aligned}
$$

The point of intersection of the lines is $(4,6,1)$

Example II

Find the point of intersection of the line
$\boldsymbol{r}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}+\lambda(2 \boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k})$
$\boldsymbol{r}=-\boldsymbol{i}+3 \boldsymbol{j}+7 \boldsymbol{k}+\mu(-2 \boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k})$

Solution

From $\boldsymbol{r}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}+\lambda(2 \boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k})$
$\boldsymbol{r}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$
$\left(\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z}\end{array}\right)=\left(\begin{array}{c}1+2 \lambda \\ -2+\lambda \\ 3-\lambda\end{array}\right)$.
$\boldsymbol{r}=-\boldsymbol{i}+3 \boldsymbol{j}+7 \boldsymbol{k}+\mu(-2 \boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k})$
$\boldsymbol{r}=\left(\begin{array}{c}-1 \\ 3 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)$
$(\boldsymbol{r})=\left(\begin{array}{c}-1-2 \mu \\ 3+\mu \\ 1+2 \mu\end{array}\right)$
$\left(\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z}\end{array}\right)=\left(\begin{array}{c}-1-2 \mu \\ 3+\mu \\ 7+2 \mu\end{array}\right)$
Equating the corresponding x components:

$$
\begin{align*}
& 1+2 \lambda=-1-2 \mu \\
& 2 \lambda+2 \mu=-2 \\
& \lambda+\mu=-1 \ldots \ldots . . \tag{3}
\end{align*}
$$

Equating the corresponding y components:

$$
\begin{align*}
& -2+\lambda=3+\mu \\
& \lambda-\mu=5 \ldots \ldots \ldots \tag{4}
\end{align*}
$$

Equating the corresponding z component;

$$
\begin{align*}
& 3-\lambda=7+2 \mu \\
& 2 \mu+\lambda=-4 \ldots \tag{5}
\end{align*}
$$

Eqn (3) -eqn (4)

$$
\begin{aligned}
& 2 \mu=-6 \\
& \mu=-3
\end{aligned}
$$

From Eqn (4)

$$
\begin{aligned}
& \lambda-(-3)=5 \\
& \lambda=2
\end{aligned}
$$

Substituting $\lambda=2$ and $\mu=-3$ in Eqn (5);
\Rightarrow The two lines intersect at $(5,0,1)$

Example III

Find the point of intersection of the lines $x-2=\frac{y+3}{4}=\frac{z-5}{2} \& \frac{x-1}{-1}=\frac{y-8}{1}=\frac{z-3}{-2}$

Solution

$$
\begin{align*}
& x-2=\frac{y+3}{4}=\frac{z-5}{2}=\lambda \tag{*}\\
& \frac{x-1}{-1}=\frac{y-8}{1}=\frac{z-3}{-2}=\mu
\end{align*}
$$

From equation (*)
$x-2=\lambda$
$x=2+\lambda$.
$y+3=4 \lambda$
$y=4 \lambda-3$
$z-5=2 \lambda$
$z=2 \lambda+5$
From equation (**)

$$
\begin{align*}
& x-1=-\mu \\
& x=1-\mu \ldots \tag{4}\\
& y-8=\mu
\end{align*}
$$

$$
\begin{align*}
& y=\mu+8 . . \tag{5}\\
& z-3=2 \mu \\
& z=2 \mu+3 \tag{6}
\end{align*}
$$

Equating the corresponding components

$$
\begin{align*}
& 2+\lambda=1-\mu \\
& \mu+\lambda=-1 \ldots \ldots \\
& \mu+8=4 \lambda-3 \tag{7}\\
& \mu-4 \lambda=-11 . .
\end{align*}
$$

Eqn(8) - (7)

$$
\begin{aligned}
& -5 \lambda=-10 \\
& \lambda=2
\end{aligned}
$$

Substitute $\lambda=2$ in Eqn (8)

$$
\begin{aligned}
& \mu-4 \times 2=-11 \\
& \mu=-3
\end{aligned}
$$

\therefore The point of intersection is $(4,5,9)$

PLANES

A plane is a surface which contains at least three noncollinear points. If two points are taken then the lines joining the two lines lies completely on the surface of the plane.
A plane is completely known if we know one point that lie on the plane and then the normal to the plane.

Equation of a Plane

Suppose a plane P passes through a point A with a position vector \boldsymbol{a} and is perpendicular to vector \mathbf{n}. Let \mathbf{r} be any point (x, y, z) in the plane.
If two lines are perpendicular, dot product of their direction vector $=0$

$$
\begin{aligned}
& A R \cdot n=0 \\
& (A O+O R) \cdot n=0 \\
& (-\boldsymbol{a}+\boldsymbol{r}) \cdot n=0 \\
& (-n \cdot \boldsymbol{a}+n \cdot \boldsymbol{r})=0 \\
& n \cdot \boldsymbol{a}=n \cdot \boldsymbol{r}
\end{aligned}
$$

Equation of a plane is given by $\mathbf{n} \cdot \boldsymbol{r}=\mathbf{n} \cdot \boldsymbol{a}$
Where $\mathbf{n}=$ normal and $\mathbf{a}=$ the point that lies on the plane.

Example I

Find the equation of a plane passing through ($1,2,3$), and is perpendicular to vector $\mathbf{4 i}+5 \boldsymbol{j}+6 \boldsymbol{k}$

Solution

$$
\mathbf{n} \cdot \mathbf{r}=\mathbf{n} \cdot \boldsymbol{a}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \\
& 4 x+5 y+6 z=4+10+18 \\
& 4 x+5 y+6 z=32
\end{aligned}
$$

Example II

Find the equation of a plane which contains A with position vector $3 \boldsymbol{i}+4 \boldsymbol{j}+2 \boldsymbol{k}$ and is perpendicular to $\boldsymbol{i}+$ $2 \boldsymbol{j}-2 \boldsymbol{k}$.

Solution

$$
\begin{aligned}
& n \cdot \boldsymbol{r}=n \cdot \boldsymbol{a} \\
& \left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right) \\
& x+2 y-2 z=3+8-4 \\
& x+2 y-2 y=7
\end{aligned}
$$

Example III

Find the equation of a plane passing through a point A with a position vector $-2 \boldsymbol{i}+4 \boldsymbol{k}$ and is perpendicular to the vector $\boldsymbol{i}+3 \boldsymbol{j}-2 \boldsymbol{k}$.

Solution

$\mathbf{n} \cdot \mathbf{r}=\mathbf{n} \cdot \boldsymbol{a}$

$$
\begin{aligned}
& \left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
0 \\
4
\end{array}\right) \\
& x+3 y-2 z=-2+0-8 \\
& x+3 y-2 z=-10 \\
& x+3 y-2 z+10=0
\end{aligned}
$$

Angle between two planes

The angle between two planes is the angle between their normals

$$
\cos \theta=\frac{n_{1} \cdot n_{2}}{\left|n_{1}\right|\left|n_{2}\right|}
$$

Example I

Find the angle between the planes $2 x+3 y+5 z=7$,
$3 x+4 y-z=8$
Solution

$$
\begin{aligned}
& n_{1}=\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right), n_{2}=\left(\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right) \\
& \cos \theta=\frac{n_{1} \cdot n_{2}}{\left|n_{1}\right|\left|n_{2}\right|} \\
& \cos \theta=\frac{\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right)\left(\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right)}{\sqrt{2^{2}+3^{2}+5^{2}} \cdot \sqrt{3^{2}+4^{2}+1^{2}}} \\
& \cos \theta=\frac{6+12-5}{\sqrt{38} \cdot \sqrt{26}}=\frac{13}{\sqrt{38} \cdot \sqrt{26}} \\
& \theta=\cos ^{-1} \frac{13}{\sqrt{38} \cdot \sqrt{26}} \\
& \theta=65 \cdot 6^{\circ}
\end{aligned}
$$

Example II

Find the angle between the planes $3 x-3 y-z=0$ and $x+$ $4 y-2 z=4$

Solution

$$
\begin{aligned}
& n_{1}=\left(\begin{array}{c}
3 \\
-3 \\
-1
\end{array}\right), n_{2}=\left(\begin{array}{c}
1 \\
4 \\
-2
\end{array}\right) \\
& \cos \theta=\frac{n_{1} n_{2}}{\left|n_{1}\right|\left|n_{2}\right|} \\
& \cos \theta=\frac{\left(\begin{array}{c}
3 \\
-3 \\
-1
\end{array}\right)\left(\begin{array}{c}
1 \\
4 \\
-2
\end{array}\right)}{\sqrt{3^{2}+(-3)^{2}+(-1)^{2}} \cdot \sqrt{1^{2}+4^{2}+(-2)^{2}}} \\
& \cos \theta=\frac{3-12+2}{\sqrt{19} \cdot \sqrt{21}}=\frac{-7}{\sqrt{21} \cdot \sqrt{19}} \\
& \theta=\cos ^{-1}\left(\frac{-7}{\sqrt{21} \cdot \sqrt{19}}\right) \\
& \theta=69 \cdot 5^{\circ}
\end{aligned}
$$

Angle between a line and a plane

n. $d=|n||d| \cos \alpha$
$\theta+90^{\circ}+\alpha=180^{\circ}$
$\theta+\alpha=90^{\circ}$
$\alpha=90^{\circ}-\theta$
n. $d=|n||d| \cos \left(90^{\circ}-\theta\right)$
n. $d=|n||d| \sin \theta$
$\sin \theta=\frac{n . d}{|n||d|}$

$$
\sin \theta=\frac{n . d}{|n||d|}
$$

Example

Find the angle between the lines
$\boldsymbol{r}=\boldsymbol{i}+2 \boldsymbol{j}-2 \boldsymbol{k}+\mu(\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k})$ and the plane $2 x-y+$ $z=4$

Solution

$$
\begin{aligned}
& \sin \theta=\frac{n \cdot d}{|n||d|} \\
& \sin \theta \frac{\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)}{\sqrt{1^{2}+(-1)^{2}+1^{2}} \cdot \sqrt{2^{2}+(-1)^{2}+1^{2}}} \\
& \sin \theta=\frac{2+1+1}{\sqrt{3} \cdot \sqrt{6}} \\
& \sin \theta=\left(\frac{4}{\sqrt{18}}\right) \\
& \theta=\sin ^{-1}\left(\frac{4}{\sqrt{18}}\right) \\
& \theta=70.5^{\circ}
\end{aligned}
$$

Find the acute angle between the line

$$
\frac{x-1}{-1}=\frac{y-8}{1}=\frac{z-3}{-2} \text { and } 7 x-y+5 z=-5
$$

Solution

$$
\begin{aligned}
& \sin \theta=\frac{n \cdot d}{|n||d|} \\
& \sin \theta \frac{\left(\begin{array}{c}
5 \\
-1 \\
1
\end{array}\right)\left(\begin{array}{c}
7 \\
-1 \\
5
\end{array}\right)}{\sqrt{5^{2}+(-1)^{2}+1^{2}} \cdot \sqrt{7^{2}+(-1)^{2}+5^{2}}} \\
& \sin \theta=\frac{35+1+5}{\sqrt{27} \cdot \sqrt{75}} \\
& \sin \theta=\left(\frac{41}{\sqrt{2025}}\right) \\
& \theta=\sin ^{-1}\left(\frac{41}{\sqrt{2025}}\right) \\
& \theta=65.7^{\circ}
\end{aligned}
$$

Solution

Find the angle between the line $\frac{x+1}{2}=\frac{y-3}{5}=\frac{z+1}{-1}$ and $x+$ $y+z=12$
Solution

$$
\begin{aligned}
& \sin \theta=\frac{n \cdot d}{|n||d|} \\
& \sin \theta \frac{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right)}{\sqrt{1^{2}+1^{2}+1^{2}} \cdot \sqrt{2^{2}+5^{2}+1^{2}}} \\
& \sin \theta=\frac{2+5-1}{\sqrt{3} \cdot \sqrt{30}} \\
& \sin \theta=\left(\frac{6}{\sqrt{90}}\right) \\
& \theta=\sin ^{-1}\left(\frac{6}{\sqrt{90}}\right) \\
& \theta=39.2^{\circ}
\end{aligned}
$$

Point of intersection of a line and a plane
 Example I

Find the point of intersection of the line $\frac{x+1}{2}=\frac{y-3}{5}=\frac{z+1}{-1}$ and $x+y+z=19$

Solution

$$
\begin{equation*}
\frac{x+1}{5}=\frac{y-3}{-1}=\frac{z+1}{1}=\lambda \tag{*}
\end{equation*}
$$

From (*)

$$
\begin{aligned}
& x+1=2 \lambda \\
& x=2 \lambda-1 \ldots \ldots \ldots \ldots \ldots \ldots . . \\
& y-3=5 \lambda \\
& y=3+5 \lambda \ldots \ldots \ldots \ldots \ldots \ldots . .(2) \\
& z+1=-\lambda \\
& z=-1-\lambda \ldots \ldots \ldots \ldots \ldots \ldots . .(3) \\
& x+y+z=12 \\
& (2 \lambda-1)+(5+3 \lambda)+(-\lambda-1)=12 \\
& 4 \lambda=16 \\
& \lambda=4
\end{aligned}
$$

From equation (1)

$$
x=2(4)-1=7
$$

From equation (2)

$$
y=5(4)+3=23
$$

From equation (3)

$$
z=-1-4=-5
$$

\therefore The point of intersection $(7,23,-5)$

Example II

Find the point of intersection of the line $\frac{x}{5}=\frac{y+2}{2}=\frac{z-1}{4}$ and the plane $3 x+4 y+2 z=25$

Solution

$$
\begin{equation*}
\frac{x}{5}=\frac{y+2}{2}=\frac{z-1}{4}=\lambda \tag{*}
\end{equation*}
$$

\qquad

$$
\begin{align*}
& y+2=2 \lambda \\
& y=2 \lambda-2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \text { (2) } \tag{2}\\
& z-1=4 \lambda \\
& z=4 \lambda+1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text { (3) } \tag{3}\\
& 3 x+4 y+2 z=25 \\
& 3(5 \lambda)+4(2 \lambda-2)+2(4 \lambda+1)=25 \\
& 15 \lambda+8 \lambda-8+8 \lambda+2=25 \\
& 31 \lambda=25+6 \\
& 31 \lambda=31 \\
& \lambda=1 \\
& x=5, \quad y=2-2=0, \quad z=5
\end{align*}
$$

\therefore The point of intersection $=(5,0,5)$

Example

Find the point of intersection of the line; $\frac{x+2}{-1}=\frac{y-2}{2}=z-$ 4 and the plane $2 x-y+3 z=10$

Solution

$$
\begin{align*}
& \frac{x+2}{-1}=\frac{y-2}{2}=z-4=\lambda \\
& x=-\lambda-2 \ldots \ldots \ldots \ldots \ldots \text { (1) } \tag{1}\\
& y=2 \lambda+2 \ldots \ldots \ldots \ldots \ldots \ldots \text { (2) } \tag{2}\\
& z=\lambda+4 \ldots \ldots \ldots \ldots \ldots . \\
& 2 x-y+3 z=10 \\
& 2(-\lambda-2)-(2 \lambda+2)+3(\lambda+4)=10 \\
& -2 \lambda-4-2 \lambda-2+3 \lambda+12=10 \\
& -4 \lambda+3 \lambda+6=10 \\
& -\lambda=4 \\
& \lambda=-4 \\
& x=-4-2=-6, \quad y=-8+2=-6, \\
& z=-4+4=0
\end{align*}
$$

The point of intersection $(-6,-6,0)$

Perpendicular distance of a point from a plane

The perpendicular distance of a point $\left(x_{1}, y_{1}, z_{1}\right)$ from the plane $a x+b y+c z+d=0$ is given by the formula;

$$
D=\left|\frac{a x+b y+c z+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|
$$

Example

Find the distance of a point $(-2,0,6)$ from the plane $2 x-$ $y+3 z=21$
Solution

$$
D=\left|\frac{a x+b y+c z+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|
$$

$x_{1}, y_{1}, z_{1}=(-2,0,6)$
Comparing $a x+b y+c z+d=0$ with
$2 x-y+3 z-21=0 ;$

$$
\begin{aligned}
& a=2, \quad b=-1, \quad c=3, \quad d=-21 \\
& D=\left|\frac{-4+0+18-21}{\sqrt{2^{2}+(-1)^{2}+3^{2}}}\right| \\
& D=\frac{-7}{\sqrt{4+1+9}}=\frac{-7}{\sqrt{14}} \text { Units }
\end{aligned}
$$

Line of intersection of two planes

Two planes intersect in a line

Examples I

Find the line of intersection of the planes $2 x+3 y+4 z=1$ and $x+y+3 z=0$

Solution

$$
\begin{aligned}
& 2 x+3 y+4 z=1 \\
& x+y+3 z=0
\end{aligned}
$$

Let $z=\lambda$

$$
\begin{align*}
& 2 x+3 y=1-4 \lambda \tag{1}\\
& x+y=-3 \lambda \ldots \ldots \tag{2}
\end{align*}
$$

Eqn (2) $\times 2$

$$
\begin{equation*}
2 x+2 y=-6 \lambda \tag{3}
\end{equation*}
$$

Eqn (1) - Eqn (3);

$$
\begin{aligned}
& y=1+2 \lambda \\
& \frac{y-1}{2}=\lambda
\end{aligned}
$$

From Eqn (2);
But $y=1+2 \lambda$

$$
\begin{aligned}
& x+y=-3 \lambda \\
& x+1+2 \lambda=-3 \lambda \\
& x+1=-3 \lambda-2 \lambda \\
& x+1=-5 \lambda \\
& \frac{x+1}{-5}=\lambda \\
& \frac{x+1}{-5}=\frac{y-1}{2}=z=\lambda
\end{aligned}
$$

Example II

Find the line of intersection of planes $2 x+3 y-z=4$ and x $-y+2 z=5$.

Solution

$$
\begin{aligned}
& 2 x+3 y-z=4 \\
& x-y+2 z=5
\end{aligned}
$$

Let $z=\lambda$

$$
\begin{align*}
& 2 x+3 y-\lambda=4 \\
& x-y+2 \lambda=5 \\
& 2 x+3 y=4+\lambda \tag{i}\\
& x-y=5-2 \lambda . . \tag{ii}
\end{align*}
$$

Multiply Eqn (ii) by 3;

$$
\begin{equation*}
3 x-3 y=15-6 \lambda \tag{iii}
\end{equation*}
$$

\qquad
Eqn (iii) + Eqn (i);

$$
\begin{aligned}
& 5 x=19-5 \lambda \\
& 5 \lambda=-x+19 \\
& \lambda=-x+\frac{19}{5} \\
& \lambda=\frac{\left(x-\frac{19}{5}\right)}{-1}
\end{aligned}
$$

Multiply Eqn (ii) by 2;

$$
\begin{equation*}
2 x-2 y=10-4 \lambda \tag{iv}
\end{equation*}
$$

\qquad
Eqn (iv) - Eqn (i);

$$
-5 y=6-5 \lambda
$$

$$
5 \lambda=-6+5 y
$$

$$
\lambda=\frac{-6}{5}+y
$$

$$
\lambda=\frac{y-\frac{6}{5}}{1}
$$

$$
\frac{x-\frac{19}{5}}{-1}=\frac{y-\frac{6}{5}}{1}=z=\lambda
$$

Example

Find the Cartesian equation of a line of intersection of the lines.

$$
\begin{aligned}
& 2 x-3 y-z=1 \\
& 3 x+4 y+2 z=3
\end{aligned}
$$

$$
\text { Let } x=\lambda
$$

$$
\begin{equation*}
-3 y-z=1-2 \lambda \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
4 y+2 z=3-3 \lambda \tag{ii}
\end{equation*}
$$

Eqn (i) $\times 2$

$$
\begin{equation*}
-6 y-2 z=2-4 \lambda \tag{iii}
\end{equation*}
$$

Eqn (iii) + Eqn (ii)

$$
\begin{aligned}
& -2 y=5-7 \lambda \\
& -2 y-5=-7 \lambda \\
& \frac{-2 y-5}{-7}=\lambda \\
& \frac{-2\left(y+\frac{5}{2}\right)}{-7}=\lambda
\end{aligned}
$$

Eqn (i) $\times 4$

$$
\begin{equation*}
\Rightarrow-12 y-4 z=4-8 \lambda \tag{iv}
\end{equation*}
$$

Eqn (ii) $\times 3$

$$
\begin{equation*}
12 y+6 z=9-9 \lambda \tag{v}
\end{equation*}
$$

Eqn (iv) + Eqn (v)
$2 z=13-17 \lambda$

$$
\begin{aligned}
& \frac{2 \mathrm{z}-13}{-17}=\lambda \\
& \frac{2\left(\mathrm{z}-\frac{13}{2}\right)}{-17}=\lambda \\
& x=\frac{\left(\mathrm{y}+\frac{1}{2}\right)}{\frac{7}{2}}=-\frac{\left(\mathrm{z}-\frac{13}{2}\right)}{\frac{17}{2}}=\lambda \\
& x=\frac{\left(\mathrm{y}+\frac{1}{2}\right)}{\frac{7}{2}}=\frac{\left(\mathrm{z}-\frac{13}{2}\right)}{-\frac{17}{2}}=\lambda
\end{aligned}
$$

Equation of a Plane

Given three points on the plane, we can find the equation of a plane;

Example I

Find the Cartesian equation of a plane passing through A $(0,3,-4) \mathrm{B}(2,-1,2)$ and $\mathrm{C}(7,4,-1)$

Solution

Let the normal $=\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$

$$
\begin{align*}
& A B=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right)-\left(\begin{array}{c}
0 \\
3 \\
-4
\end{array}\right)=\left(\begin{array}{c}
2 \\
-4 \\
6
\end{array}\right) \\
& A C=\left(\begin{array}{c}
7 \\
4 \\
-1
\end{array}\right)-\left(\begin{array}{c}
0 \\
3 \\
-4
\end{array}\right)=\left(\begin{array}{l}
7 \\
1 \\
3
\end{array}\right) \\
& \left(\begin{array}{c}
p \\
q \\
r
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-4 \\
6
\end{array}\right)=0 \\
& 2 p-4 q+6 r=0 \\
& p-2 q+3 r=0 \ldots \ldots \ldots \ldots \ldots \tag{i}
\end{align*}
$$

$\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{l}7 \\ 1 \\ 3\end{array}\right)=0$
$7 p+q+3 r=0$
From (i)

$$
\begin{aligned}
& p=2 q-3 r \ldots \\
& \Rightarrow 7(2 q-3 r)+q+3 r=0 \\
& 14 q-21 r+q+3 r=0 \\
& 15 q-18 r=0 \\
& 5 q-6 r=0 \\
& 5 q=6 r \\
& q=\frac{6}{5} r \ldots \ldots \ldots \ldots \ldots \ldots \\
& \Rightarrow p=2\left(\frac{6 r}{5}\right)-3 r \\
& p=\frac{12}{5} r-3 r
\end{aligned}
$$

$$
\begin{aligned}
& p=-\frac{3}{5} r \\
& \left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{c}
-3 r / 5 \\
6 r / 5 \\
r
\end{array}\right)=\frac{r}{5}\left(\begin{array}{c}
-3 \\
6 \\
5
\end{array}\right) \\
& \therefore n=\left(\begin{array}{c}
-3 \\
6 \\
5
\end{array}\right) \\
& n \cdot \boldsymbol{r}=n \cdot \boldsymbol{a} \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{c}
-3 \\
6 \\
5
\end{array}\right)=\left(\begin{array}{c}
-3 \\
6 \\
5
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
3 \\
-3 x+6 y+5 z=0+18-20 \\
-3 x+6 y+5 z=-2 \\
3 x-6 y-5 z-2=0
\end{array}\right.
\end{aligned}
$$

Example II

Find the equation of a plane passing through points $\mathrm{P}(4,2$, $3), \mathrm{Q}(5,1,4)$ and $\mathrm{R}(-2,1,1)$.

Solution

Let the normal to the plane be $\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$

$$
\begin{aligned}
& P Q=\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right)-\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \\
& P R=\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
-6 \\
-1 \\
-2
\end{array}\right)
\end{aligned}
$$

$\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=0$
$p-q-r=0$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{l}-6 \\ -1 \\ -2\end{array}\right)=0$
$-6 p-q-2 r=0$
$6 p+q+2 r=0$
From Eqn (i);

$$
\begin{aligned}
& p=q-r \\
& 6(q-r)+q+2 r=0 \\
& 6 q-6 r+q+2 r=0 \\
& 7 q-4 r=0 \\
& 7 q=4 r \\
& q=\frac{4 r}{7} \\
& p=\frac{4 r}{7}-r \\
& \mathrm{p}=\frac{-3 r}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\mathrm{p} \\
\mathrm{q} \\
\mathrm{r}
\end{array}\right)=\left(\begin{array}{c}
\frac{-3 \mathrm{r}}{7} \\
\frac{4 r}{7} \\
7 \\
\mathrm{r}
\end{array}\right)=\frac{\mathrm{r}}{7}\left(\begin{array}{c}
-3 \\
4 \\
7
\end{array}\right) \\
& n=\left(\begin{array}{c}
-3 \\
4 \\
7
\end{array}\right) \\
& \text { n.r } \mathrm{n} \cdot \mathrm{a} \\
& \left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right)\left(\begin{array}{c}
-3 \\
4 \\
7
\end{array}\right)=\left(\begin{array}{c}
-3 \\
4 \\
7
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right) \\
& -3 x+4 y+7 \mathrm{z}=-12+8+21 \\
& -3 \mathrm{x}+4 \mathrm{y}+7 \mathrm{z}=17 \\
& 3 \mathrm{x}-4 \mathrm{y}-7 \mathrm{z}+17=0
\end{aligned}
$$

Example III

Find the equation of the planes passing through the following points:
(i) $\mathrm{A}(\mathbf{0}, \mathbf{2},-4) \mathrm{B}(\mathbf{2}, \mathbf{0}, \mathbf{2}) \mathrm{C}(-8,4,0)$

Solution

Let the normal $n=\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$
$A B=\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)-\left(\begin{array}{c}0 \\ 2 \\ -4\end{array}\right)=\left(\begin{array}{c}2 \\ -2 \\ 6\end{array}\right)$
$A C=\left(\begin{array}{c}-8 \\ 4 \\ 0\end{array}\right)-\left(\begin{array}{c}0 \\ 2 \\ -4\end{array}\right)=\left(\begin{array}{c}-8 \\ 2 \\ 4\end{array}\right)$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -2 \\ 6\end{array}\right)=0$
$2 p-2 q+6 r=0$
$p-q+3 r=0$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{c}-8 \\ 2 \\ 4\end{array}\right)=0$
$-8 p+2 q+4 r=0$
$-4 p+q+2 r=0$ \qquad
$p-q+3 r=0$
$p=q-3 r$
$-8(q-3 r)+2 q+4 r=0$
$-8 q+24 r+2 q+4 r=0$
$-6 q+28 r=0$
$6 q=28 r$
$q=\frac{14 r}{3}$
$p=\frac{14 r}{3}-3 r=\frac{5 r}{3}$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right)=\left(\begin{array}{c}5 r / 3 \\ 14 r / 3 \\ r\end{array}\right)=\frac{r}{3}\left(\begin{array}{c}5 \\ 14 \\ 3\end{array}\right)$
$n=\left(\begin{array}{c}5 \\ 14 \\ 3\end{array}\right)$
n. $\boldsymbol{r}=n . \boldsymbol{a}$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{c}5 \\ 14 \\ 3\end{array}\right)=\left(\begin{array}{c}5 \\ 14 \\ 3\end{array}\right)\left(\begin{array}{c}0 \\ 2 \\ -4\end{array}\right)$
$5 x+14 y+3 z=0+28-12$
$5 x+14 y+3 z-16=0$
(ii) $\mathrm{A}(-1,0,1), \mathrm{B}(3,3,-2), \mathrm{C}(-1,1,1)$

Let the normal $=\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$
$\mathrm{AB}=\left(\begin{array}{c}3 \\ 3 \\ -2\end{array}\right)-\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}4 \\ 3 \\ -3\end{array}\right)$
$A C=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)-\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
$\left(\begin{array}{l}\boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{r}\end{array}\right) \cdot\left(\begin{array}{c}4 \\ 3 \\ -3\end{array}\right)=0$
$4 p+3 q-3 r=0$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=0$
$q=0$
Substitute $q=0$ in Eqn (i);

$$
\begin{aligned}
& 4 p=3 r \\
& p=\frac{3 r}{4} \\
& \left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{c}
3 r / 4 \\
0 \\
r
\end{array}\right)=\frac{r}{4}\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right) \\
& n=\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right) \\
& n \cdot \boldsymbol{r}=n \cdot \boldsymbol{a} \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right)\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \\
& 3 x+4 z=-3+4 \\
& (3 x+4 z=1) \\
& 3 x+4 z-1=0
\end{aligned}
$$

Example IV

Find the Cartesian equation of a plane containing the point $(1,3,1)$ and it's parallel to vectors $(1,-1,-3)$ and (2, 1, -3)

Solution

$A B=\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$ and $A C=\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$
Let the normal $=\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)=0$
$p-q+3 r=0$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right)\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)=0$
$2 p+q-3 r=0$ \qquad
$p=q-3 r$
$2(q-3 r)+q-3 r=0$
$2 q-6 r+q-3 r=0$
$3 q-9 r=0$
$q=3 r$
$p=3 r-3 r$
$p=0$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right)=\left(\begin{array}{c}0 \\ 3 r \\ r\end{array}\right)$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right)=r\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)$
$\mathbf{r} \cdot \mathbf{n}=\mathbf{n} \cdot \mathbf{a}$
$n=\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$

$$
3 y+z=10
$$

Example V

Find the Cartesian equation of the plane passing through the points $\mathrm{A}(1,0,-2), \mathrm{B}(3,-1,1)$ parallel to the line $\boldsymbol{r}=3 \boldsymbol{i}+(2 \alpha-1) \boldsymbol{j}+(5-\alpha) \boldsymbol{k}$

Solution:

$$
\begin{aligned}
& \boldsymbol{r}=3 \boldsymbol{i}+2 \alpha \boldsymbol{j}-\boldsymbol{j}+5 \boldsymbol{k}-\alpha \boldsymbol{k} \\
& \boldsymbol{r}=3 \boldsymbol{i}-\boldsymbol{j}+5 \boldsymbol{k}-\alpha(\mathbf{0} \boldsymbol{j}+\mathbf{2} \boldsymbol{j}-\boldsymbol{k}) \\
& A B=\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right)-\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)
\end{aligned}
$$

$A B=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$
$A C=\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)$
$\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}p \\ q \\ r\end{array}\right)=0$
$2 p-q+3 r=0$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=0$
$2 q-r=0$
From Eqn (ii);
$\Rightarrow r=2 q$
$2 p-q+3(2 q)=0$
$2 p-q+6 q=0$
$2 p+5 q=0$
$p=\frac{-5}{2} q$
$\left(\begin{array}{l}p \\ q \\ r\end{array}\right)=\left(\begin{array}{c}\frac{-5 q}{2} \\ q \\ 2 q\end{array}\right)=\frac{q}{2}\left(\begin{array}{c}-5 \\ 2 \\ 4\end{array}\right)$
$n=\left(\begin{array}{c}-5 \\ 2 \\ 4\end{array}\right)$
$n . \boldsymbol{r}=n . \boldsymbol{a}$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\left(\begin{array}{c}-5 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{c}-5 \\ 2 \\ 4\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)$
$-5 x+2 y+4 z=-5-8$
$(-5 x+2 y+4 z=-13)$
$5 x-2 y-4 z-13=0$

Example VI

Find the equation of the plane containing line $r=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)+t\left(\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right)$ and is parallel to the line $r=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)+S\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$

$$
A B=\left(\begin{array}{c}
-2 \\
1 \\
-1
\end{array}\right), \quad A C=\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right), \quad n=\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)
$$

$$
\left(\begin{array}{c}
p \\
q \\
r
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
1 \\
-1
\end{array}\right)=0
$$

$$
-2 p+q-r=0
$$

$$
\begin{equation*}
\Rightarrow 2 p-\mathrm{q}+r=0 . \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& \left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right)=0 \\
& -p+q+2 r=0 . \tag{ii}
\end{align*}
$$

From Eqn (i);

$$
\begin{aligned}
& r=-2 p+q \\
& \Rightarrow p-q-2(q-2 p)=0 \\
& p-q-2 q+4 p=0 \\
& 5 p-3 q=0 \\
& p=\frac{3 q}{5} \\
& r=-2\left(\frac{3 q}{5}\right)+q \\
& r=\frac{-q}{5}
\end{aligned}
$$

$$
n=\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{c}
\frac{3 q}{5} \\
q \\
\frac{-q}{5}
\end{array}\right)=\frac{q}{5}\left(\begin{array}{c}
3 \\
5 \\
-1
\end{array}\right)
$$

$$
n \cdot \boldsymbol{r}=n \cdot \boldsymbol{a}
$$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
5 \\
-1
\end{array}\right)=\left(\begin{array}{c}
3 \\
5 \\
-1
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

$$
3 x+5 y-z=3-5+0
$$

$$
3 x+5 y-z=-2
$$

Example VII

Find the Cartesian equation of the plane formed by the lines $\mathbf{r}=-2 \mathbf{i}+5 \mathbf{j}-11 \mathbf{k}+\lambda(3 \mathbf{i}+\mathbf{j}+3 \mathbf{k})$ and $\mathbf{r}=8 \mathbf{i}+9 \mathbf{j}+\lambda(4 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k})$

Solution

$$
\begin{align*}
& \text { Let } n=\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right) \Rightarrow\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
1 \\
3
\end{array}\right)=0 \\
& 3 p+q+3 r=0 \ldots \ldots \ldots \ldots \ldots \ldots \tag{i}\\
& \left(\begin{array}{l}
p \\
q \\
r
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
2 \\
5
\end{array}\right)=0 \\
& 4 p+2 q+5 r=0 \ldots \ldots \ldots \ldots \ldots \tag{ii}
\end{align*}
$$

From Eqn (i);

$$
\begin{aligned}
& q=-3 p-3 r \\
& 4 p+2(-3 p-3 r)+5 r=0 \\
& 4 p-6 p-6 r+5 r=0 \\
& -2 p-r=0 \\
& r=-2 p \\
& q=-3 p-3(-2 p) \\
& q=3 p
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{c}
p \\
3 p \\
-2 p
\end{array}\right)=p\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right) \\
& n=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right) \\
& n \cdot \boldsymbol{r}=n \cdot \boldsymbol{a} \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
5 \\
-11
\end{array}\right) \\
& x+3 y-2 z=-2+15+22 \\
& x+3 y-2 z=35
\end{aligned}
$$

INTERNAL AND EXTERNAL DIVISIONS

Let A and B be points in space with position vectors A and B .

Let R be a point on a line segment $A B$ dividing $A B$ internally in the ratio of $\lambda: \mu$
$O R=O A+A R$
$O R=\boldsymbol{a}+\frac{\mu}{\lambda+\mu} A B$

$$
=\boldsymbol{a}+\frac{\lambda}{\lambda+\mu}(\boldsymbol{b}-\boldsymbol{a})
$$

$O R=\frac{a \lambda+a \mu+b \lambda-a \lambda}{\lambda+\mu}$
$O R=\frac{a \mu+b \lambda}{\lambda+\mu}$

Example I

Given that; $O P=\left(\begin{array}{c}4 \\ -3 \\ 5\end{array}\right), O Q=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$. Find the coordinates of R such that $P R: R Q=1: 2$
$\boldsymbol{r}=\frac{\boldsymbol{a} \mu+\boldsymbol{b} \lambda}{\lambda+\mu}$
$O R=2\left(\begin{array}{c}4 \\ -3 \\ 5\end{array}\right)+1\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$
$O R=\frac{\left(\begin{array}{c}9 \\ -6 \\ 12\end{array}\right)}{3}$
$O R=\frac{1}{3}\left(\begin{array}{c}0 \\ -6 \\ 12\end{array}\right)$
$R=(3,-2,4)$

Example II

The points $A\left(\begin{array}{c}2 \\ -1 \\ 6\end{array}\right)$ and $B\left(\begin{array}{l}7 \\ 6 \\ 1\end{array}\right)$ form a line segment
which is divided externally in the ratio of $4:-1$. Find the coordinates of T
$(O T)=\frac{-1\left(\begin{array}{c}2 \\ -1 \\ 6\end{array}\right)+4\left(\begin{array}{l}7 \\ 6 \\ 1\end{array}\right)}{-1+4}$
$O T=\frac{\left(\begin{array}{c}-2+28 \\ 1+24 \\ -6+4\end{array}\right)}{3}$
$=\left(\frac{1}{3}\right)\left(\begin{array}{c}26 \\ 25 \\ -2\end{array}\right)$
$O T=\left(\frac{26}{3}, \frac{25}{3},-\frac{2}{3}\right)$

Example III

Find the position vectors $\left(\begin{array}{c}3 \\ -2 \\ 5\end{array}\right)$ and $\left(\begin{array}{c}9 \\ 1 \\ -1\end{array}\right)$, Find the position vectors of C which divides AB externally in the ratio of 5:-3
Solution:
$\frac{-3\left(\begin{array}{c}3 \\ -2 \\ 5\end{array}\right)+5\left(\begin{array}{c}9 \\ 1 \\ -1\end{array}\right)}{5+-3}$
$\frac{\left(\begin{array}{c}-9 \\ 6 \\ -15\end{array}\right)+\left(\begin{array}{c}45 \\ 5 \\ -5\end{array}\right)}{2}$
$\frac{\left(\begin{array}{c}-9+45 \\ 6+5 \\ -15-5\end{array}\right)}{2}$
$\frac{1}{2}\left(\begin{array}{c}36 \\ 11 \\ -20\end{array}\right)$
$O C=\left(\begin{array}{c}18 \\ 11 / 2 \\ 10\end{array}\right)$
$C=\left(18, \frac{11}{2},-10\right)$

Example IV

Given that $\mathrm{A}(0,5,-3), \mathrm{B}(2,3,-4)$ and $\mathrm{C}(1,-1,2)$. Find the coordinates of D if $A B C D$ is a rectangle or parallelogram.

$A B=D C$
$(O B-O A)=(O C-O D)$
$O D=O C+O A-O B$
$O D=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)+\left(\begin{array}{c}0 \\ 5 \\ -3\end{array}\right)-\left(\begin{array}{c}2 \\ 3 \\ -4\end{array}\right)$
$O D=\left(\begin{array}{c}1 \\ 4 \\ -1\end{array}\right)-\left(\begin{array}{c}2 \\ 3 \\ -4\end{array}\right)$
$O D=\left(\begin{array}{c}-1 \\ 1 \\ 3\end{array}\right)$
$D=(-1,1,3)$

Proving that three points are vertices of a triangle

Give a triangle ABC with vertices
$A=\left(x_{1} y_{1} z_{1}\right) B\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right) \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$

$$
\begin{gathered}
A B+B C+C A=0 \\
O B-O A+O C-O B+O A-O C=0
\end{gathered}
$$

Example

Show that $3 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k}, 8 \boldsymbol{i}+7 \boldsymbol{j}+4 \boldsymbol{k}$ and $\mathbf{1 1 i}+\mathbf{4 j}+\mathbf{5 k}$ are vertices of a triangle

$A B+B C+C A=0$
$O B-O A+O C-O B+O A-O C$
$=\left(\begin{array}{l}8 \\ 7 \\ 4\end{array}\right)-\left(\begin{array}{l}3 \\ 3 \\ 1\end{array}\right)+\left(\begin{array}{c}11 \\ 4 \\ 5\end{array}\right)-\left(\begin{array}{l}8 \\ 7 \\ 4\end{array}\right)+\left(\begin{array}{l}3 \\ 3 \\ 1\end{array}\right)-\left(\begin{array}{c}11 \\ 4 \\ 5\end{array}\right)$
$=\left(\begin{array}{l}5 \\ 4 \\ 3\end{array}\right)\left(\begin{array}{c}3 \\ -3 \\ 1\end{array}\right)+\left(\begin{array}{l}-8 \\ -1 \\ -4\end{array}\right)$
$\left(\begin{array}{l}8 \\ 1 \\ 4\end{array}\right)+\left(\begin{array}{l}-8 \\ -1 \\ -4\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)=0$

Length and the equation of the perpendicular drawn

 from the point
Example I

Find the equation and length of the perpendicular drawn from a point $(2,3,-4)$ to the line

$$
\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}
$$

Solution

$$
\begin{aligned}
& \frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3} \\
\Rightarrow & \frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}
\end{aligned}
$$

$$
A B=\left(\begin{array}{l}
2-2\left(\frac{37}{49}\right) \\
6\left(\frac{37}{49}\right)-3 \\
5-3\left(\frac{37}{49}\right)
\end{array}\right)
$$

$$
\begin{aligned}
& A B=\left(\begin{array}{c}
24 / 49 \\
75 / 49 \\
134 / 49
\end{array}\right) \\
& r=\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)+\lambda\left(\begin{array}{c}
\frac{24}{49} \\
\frac{75}{49} \\
\frac{134}{49}
\end{array}\right)
\end{aligned}
$$

Equation of the perpendicular

$$
\frac{x-2}{72 / 49}=\frac{y-3}{-69 / 49}=\frac{z-4}{186 / 49}
$$

Length of the perpendicular AB

$$
\begin{aligned}
& A B=\sqrt{\left(\frac{24}{49}\right)^{2}+\left(\frac{75}{49}\right)^{2}+\left(\frac{134}{49}\right)^{2}} \\
& A B=3.1719 \text { units }
\end{aligned}
$$

Find the length and equation of the perpendicular drawn from a point $(5,4,-1)$ to the line; $\boldsymbol{r}=\boldsymbol{i}+\lambda(2 \boldsymbol{i}+9 \boldsymbol{j}+$ 5k)

Solution

$r=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 9 \\ 5\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\left(\begin{array}{l}2 \lambda \\ 9 \lambda \\ 5 \lambda\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1+2 \lambda \\ 9 \lambda \\ 5 \lambda\end{array}\right)$
$A B=\left(\begin{array}{c}1+2 \lambda-5 \\ 9 \lambda-4 \\ 5 \lambda+1\end{array}\right)=\left(\begin{array}{c}2 \lambda-4 \\ 9 \lambda-4 \\ 5 \lambda+1\end{array}\right)$
$A B . d=0$
$d=\left(\begin{array}{l}2 \\ 9 \\ 5\end{array}\right)$
$\left(\begin{array}{c}2 \lambda-4 \\ 9 \lambda-4 \\ 5 \lambda+1\end{array}\right)\left(\begin{array}{l}2 \\ 9 \\ 5\end{array}\right)=0$
$(2(2 \lambda-4)+9(9 \lambda-4)+5(5 \lambda+1)=0$

$$
\begin{aligned}
& r=\left(\begin{array}{c}
4 \\
0 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
6 \\
-3
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
4 \\
0 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
6 \\
-3
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
4-2 \lambda \\
6 \lambda \\
-1-3 \lambda
\end{array}\right) \\
& \text { AB. }\left(\begin{array}{c}
-2 \\
6 \\
-3
\end{array}\right)=0 \\
& A B=O B-O A \\
& =\left(\begin{array}{c}
4-2 \lambda-2 \\
6 \lambda-3 \\
1-3 \lambda-4
\end{array}\right)=\left(\begin{array}{l}
2-2 \lambda \\
6 \lambda-3 \\
5-3 \lambda
\end{array}\right) \\
& \left(\begin{array}{l}
2-2 \lambda \\
6 \lambda-3 \\
5-3 \lambda
\end{array}\right)\left(\begin{array}{c}
-2 \\
6 \\
-3
\end{array}\right)=0 \\
& (-2(2-2 \lambda)+6(6 \lambda-3)-3(5-3 \lambda)=0 \\
& -4+4 \lambda+36 \lambda-18-15+9 \lambda=0 \\
& 36 \lambda+9 \lambda+4 \lambda-18-15-4=0 \\
& 49 \lambda=37 \\
& \lambda=\frac{37}{49}
\end{aligned}
$$

$4 \lambda-8+81 \lambda-36+25 \lambda+5=0$
$81 \lambda+25 \lambda+4 \lambda-8+5-36=0$
$110 \lambda=39$
$\lambda=\frac{39}{110}$
$A B=\left(\begin{array}{c}2\left(\frac{39}{110}\right)-4 \\ 9\left(\frac{39}{110}\right)-4 \\ 5\left(\frac{39}{110}\right)+1\end{array}\right)$
$=\left(\begin{array}{c}\frac{-362}{110} \\ \frac{-89}{110} \\ \frac{-305}{110}\end{array}\right)$
$|A B|=\sqrt{\left(\frac{-362}{110}\right)^{2}\left(\frac{-89}{110}\right)^{2}\left(\frac{-305}{110}\right)^{2}}$
$|A B|=4.379$ units

Equation of the perpendicular bisector is

$$
\begin{gathered}
r=\left(\begin{array}{c}
5 \\
4 \\
-1
\end{array}\right)+\mu\left(\begin{array}{c}
\frac{-362}{110} \\
\frac{-89}{110} \\
\frac{305}{110}
\end{array}\right) \\
\frac{x-5}{-362 / 110}=\frac{y-4}{-89 / 110}=\frac{z+1}{305 / 110}=\mu
\end{gathered}
$$

Shortest Distance between Parallel Planes

Example I

Find the perpendicular distance between two parallel planes;

$$
\begin{aligned}
& 2 x+5 y-14 z=30 \\
& 2 x+5 y-14 z=-15
\end{aligned}
$$

Solution

$$
r . \hat{n}=d_{1}
$$

Plane 1
$r .\left(\frac{2 \boldsymbol{i}+5 \boldsymbol{j}-14 \boldsymbol{k}}{15}\right)=\frac{30}{15}$
$r .\left(\frac{2 \boldsymbol{i}+5 \boldsymbol{j}-14 \boldsymbol{k}}{15}\right)=2$
$r .\left(\frac{2 \boldsymbol{i}+5 \boldsymbol{j}-14 \boldsymbol{k}}{15}\right)=2$
Plane 2
$r .2 \boldsymbol{i}+5 \boldsymbol{j}-14 \boldsymbol{k}=-15$
$r .\left(\frac{2 \boldsymbol{i}+5 \boldsymbol{j}-14 \boldsymbol{k}}{15}\right)=-1$

Example II

Find the perpendicular distance between two parallel planes;
$x+2 y-z=-4$ and $x+2 y-z=3$
$r . \hat{n}=d_{1}$
For plane 1

$$
\begin{aligned}
& r .(\mathbf{i}+2 \mathbf{j}-\mathbf{k})=-4 \\
& r . \frac{(\mathbf{i}+2 \mathbf{j}-\mathbf{k})}{\sqrt{6}}=\frac{-4}{\sqrt{6}}
\end{aligned}
$$

For plane 2

$$
\begin{gathered}
r .(\mathbf{i}+2 \mathbf{j}-\mathbf{k})=3 \\
0 \quad r \cdot \frac{(\mathbf{i}+2 \mathbf{j}-\mathbf{k})}{\sqrt{6}}=\frac{3}{\sqrt{6}}
\end{gathered}
$$

$$
=\frac{3}{\sqrt{6}}+\frac{4}{\sqrt{6}}=\frac{7}{\sqrt{6}} \text { units }
$$

Shortest distance between two parallel lines

Distance between a point A and line B
$d=A B \sin \theta$

Example I

Find the shortest distance between the following pairs of parallel lines

$$
\frac{x-2}{1}=\frac{y-1}{-1}=\frac{z-3}{2}
$$ and

$$
\frac{x+1}{1}=\frac{y-3}{-1}=\frac{z-1}{2}
$$

$$
A B=\sqrt{(2+1)^{2}+(1-3)^{2}+(3-1)^{2}}
$$

$$
A B=\sqrt{17}
$$

$$
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}
$$

$$
\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)-\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{c}
-3 \\
2 \\
-2
\end{array}\right)
$$

$\cos \theta=\frac{A B \cdot d}{|A B| \cdot d}$
$\cos \theta=\frac{\left(\begin{array}{c}-3 \\ 2 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)}{\sqrt{17} \sqrt{6}}$
$\theta=\cos ^{-1}\left(\frac{-9}{\sqrt{100}}\right)$
$\theta=26.8^{\circ}$
$\sin 26.8^{\circ}=\frac{d}{\sqrt{17}}$
$d=1.859$ units

Example II

Find the distance between the following pairs of parallel lines
$r=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$
$r=\left(\begin{array}{c}1 \\ -1 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$
Solution

$A B=\sqrt{(2-1)^{2}+(0+1)^{2}+(3-4)^{2}}$
$A B=\sqrt{1+1+1}$
$A B=\sqrt{3}$
$\cos \theta=\frac{2}{\sqrt{18}}$
$\theta=\cos ^{-1}\left(\frac{2}{\sqrt{18}}\right)$
$\theta=61.9^{\circ}$
$\sin \theta=\frac{d}{\sqrt{3}}$
$\sin 61.9^{\circ}=\frac{d}{\sqrt{3}}$
$d=\sqrt{3} \sin 61.9^{\circ}$
$d=1.52789$ units

SKEW LINES

These are lines which are neither parallel nor perpendicular
Shortest distance between two skew lines

Example I

Find the shortest distance between the following skew lines
$\boldsymbol{r}=\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ and $\boldsymbol{r}=\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$

$\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$

$$
\begin{align*}
& \left(\begin{array}{l}
2 \mu-(1+\lambda) \\
-1+\mu-(2+2 \lambda) \\
1+3 \mu-(3+\lambda)
\end{array}\right)-\left(\begin{array}{l}
2 \mu-\lambda+1 \\
\mu-2 \lambda-3 \\
3 \mu-\lambda-2
\end{array}\right) \\
& \left(\begin{array}{l}
2 \mu-\lambda+1 \\
\mu-2 \lambda-3 \\
3 \mu-\lambda-2
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=0 \\
& 2 \mu-\lambda+1+2 \mu-4 \lambda-6+3 \mu-\lambda-2=0 \\
& 7 \mu-6 \lambda=7 \ldots \ldots \ldots \ldots \ldots \ldots \tag{1}
\end{align*}
$$

$$
A B=\left(\begin{array}{l}
2 \\
-0.4 \\
-1.2
\end{array}\right)
$$

$$
A B=\sqrt{2^{2}+(-0.4)^{2}+(-1.2)^{2}}=2.3664 \text { units }
$$

Example II

Find the shortest distance between the following pairs of skew lines

$$
\frac{x-2}{0}=\frac{y+1}{1}=\frac{z}{2} \text { and } \frac{x+1}{1}=\frac{y-1}{-3}=\frac{z-1}{-2}
$$

Solution

$$
\mathbf{r}=\left(\begin{array}{l}
2 \\
-1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), \mathbf{r}=\left(\begin{array}{l}
-1 \\
1 \\
1
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
-3 \\
-2
\end{array}\right)
$$

$\overrightarrow{A B}=\overrightarrow{O B-O A}\left(\begin{array}{l}(-1+\mu)-2 \\ (1-3 \mu)-(-1+\lambda) \\ (1-2 \mu)-2 \lambda\end{array}\right)=\left(\begin{array}{l}\mu-3 \\ -3 \mu-\lambda+2 \\ 1-2 \mu-2 \lambda\end{array}\right)$
$\left(\begin{array}{l}\mu-3 \\ -3 \mu-\lambda+2 \\ 1-2 \mu-2 \lambda\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)=0$
$-3 \mu-\lambda+2+2-4 \mu-4 \lambda=0$
$-7 \mu-5 \lambda-4=0$
$7 \mu+5 \lambda-4=0$
$7 \mu+5 \lambda=4$.
$\left(\begin{array}{l}\mu-3 \\ -3 \mu-\lambda+2 \\ 1-2 \mu-2 \lambda\end{array}\right)\left(\begin{array}{l}1 \\ -3 \\ -2\end{array}\right)=0$
$\mu-3+9 \mu+3 \lambda-6-2+4 \mu+4 \lambda$
$14 \mu+7 \lambda-11=0$
$14 \mu+7 \lambda=11$
$\mu=\frac{9}{7}, \lambda=-1$
$A B=\sqrt{\left(\frac{-12^{2}}{7}\right)+\left(\frac{-6}{7}\right)^{2}+\left(\frac{3}{7}\right)^{2}}$
$A B=\sqrt{\frac{144}{49}+\frac{36}{49}+\frac{9}{49}}$
$A B=\frac{3 \sqrt{21}}{7}$ units

Vector Geometry

Example I

Triangle OAB has $\mathrm{OA}=\mathbf{a}, \mathrm{OB}=\mathbf{b}$. C is a point on OA such that $O C=2 / 3$ a. D is a mid point of $A B$ when $C D$ is produced, it meets OB at E such that $\mathrm{DE}=\mathrm{nCD}$ and $\mathrm{BE}=\mathbf{k b}$. Express BE, DE in terms of;
a) \mathbf{n}, \mathbf{a} and \mathbf{b}
b) \mathbf{k}, \mathbf{b} and \mathbf{a}. Hence find the values of \mathbf{n} and \mathbf{k}.
$\left(\frac{1}{2}+k\right) \mathbf{b}=\frac{1}{2} n \mathbf{b}$
$\frac{1}{2}+k=\frac{1}{2} \times 3$
$k=\frac{3}{2}-\frac{1}{2}=1$

Example II

Given that $O A$ is \mathbf{a} and $O B=b$ point R is on $O B$ such that $O R: R B=4: 1$. Point P is on $A B$ such that $B P: P A=2: 3$.
When RP and OA are both produced, they meet at Q. Find OR and OP in terms of \mathbf{a} and \mathbf{b}
ii) OQ in terms of a

Solution

$\overrightarrow{O P}=\overrightarrow{O B}+\overrightarrow{B P}$
$\overrightarrow{O P}=\mathbf{b}+\frac{2}{5} \overrightarrow{B A}$
$\overrightarrow{O P}=\mathbf{b}+\frac{2}{5}(a-b)$
$\overrightarrow{O P}=\frac{1}{5}(3 \mathbf{b}+2 \mathbf{a})$

$$
\overrightarrow{O Q}=\lambda \overrightarrow{O A}=\lambda \mathbf{a}
$$

$$
\overrightarrow{O Q}=\overrightarrow{O R}+\overrightarrow{R Q}
$$

$$
\overrightarrow{O Q}=\frac{4}{5} \mathbf{b}+\mu \overrightarrow{R P}
$$

$$
\overrightarrow{O Q}=\frac{4}{5} \mathbf{b}+\mu\left(\frac{-4}{5} \mathbf{b}+\frac{1}{5}(2 \mathbf{a}+3 \mathbf{b})\right)
$$

$$
\overrightarrow{O Q}=\left(\frac{4}{5}-\frac{1}{5} \mu\right) \mathbf{b}+\frac{2}{5} \mu \mathbf{a}
$$

$$
\frac{4}{5}-\frac{1}{5} \mu=0
$$

$$
\mu=4
$$

$$
\begin{aligned}
& \lambda=\frac{2}{5} \mu \\
& \lambda=\frac{8}{5}
\end{aligned}
$$

$$
\mathrm{OQ}=\frac{8}{5} \mathbf{a}
$$

Example III

O, A and B are non collinear points $\mathrm{OA}=\mathrm{a}, \mathrm{OB}=\mathrm{b}, \mathrm{C}$ is midpoint of AB, D is a point on OB such that $\mathbf{O D}=\frac{1}{4} \mathbf{O B}$.
T is a point of intersection of OC and AD. Find the vector OT in terms of a and b.

Solution

$$
\begin{aligned}
& \mathbf{O T}=\lambda \mathrm{OC} \\
& \mathbf{O C}=\mathbf{O B}+\mathbf{B C} \\
&=\mathbf{b}+\frac{1}{2} \mathbf{B A} \\
&=\mathbf{b}+\frac{1}{2}(\mathbf{a}-\mathbf{b}) \\
& \begin{aligned}
\mathbf{O C} & =\frac{1}{2}(\mathbf{a}+\mathbf{b}) \\
\text { OT } & =\lambda\left(\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right) \\
\text { OT } & =\frac{1}{2} \lambda \mathbf{a}+\frac{1}{2} \lambda \mathbf{b} \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned} \\
& \begin{aligned}
\mathbf{O T} & =\mathbf{O A}+\mathbf{A T} \\
& =\mathbf{a}+\mu \mathbf{A D} \\
\mathbf{A D} & =\mathbf{A O}+\mathbf{O D} \\
& =\mathbf{a}+\frac{1}{4} \mathbf{b} \\
\mathbf{O T} & =\mathbf{a}+\mu\left(\mathbf{a}+\frac{1}{4} \mathbf{b}\right) \\
\mathbf{O T} & =\mathbf{a}-\mu \mathbf{a}+\frac{1}{4} \mu \mathbf{b}
\end{aligned}
\end{aligned}
$$

$$
\begin{equation*}
\mathbf{O T}=(1-\mu) \mathbf{a}+\frac{1}{4} \mu \mathbf{b} \tag{ii}
\end{equation*}
$$

Equating components of vectors \mathbf{a} and \mathbf{b} in Eqns (i) and (ii);

$$
\begin{align*}
& \frac{1}{2} \lambda=1-\mu \tag{iii}\\
& \frac{1}{2} \lambda=\frac{1}{4} \mu \ldots \tag{iv}
\end{align*}
$$

\qquad

From Eqn (iv);

$$
2 \lambda=\mu
$$

$$
\Rightarrow \frac{\lambda}{2}=1-2 \mu
$$

$$
\frac{5 \lambda}{2}=1
$$

$$
\lambda=\frac{2}{5}
$$

$$
\mu=\frac{4}{5}
$$

$$
\mathbf{O T}=\frac{2}{5}\left(\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right)
$$

$$
\mathbf{O T}=\frac{1}{5}(\mathbf{a}+\mathbf{b})
$$

Revision Exercise

1. In a triangle $A B C$, the altitudes from B and C meet the opposite sides at E and F respectively. BE and CF intersect at O . Taking O as the origin, use the dot product to prove that $A O$ is perpendicular to BC
(b) Find the point of intersection of the line

$$
\frac{x}{5}=\frac{y+2}{2}=\frac{z-1}{4} \text { with the plane }
$$

$3 x+4 y+2 z-25=0$
(c) Find the angle between the line $\frac{x+4}{8}=\frac{y-2}{2}=\frac{z+1}{-4}$ and the plane $4 x+3 y+1=0$
2. (a) Show that the equation of the plane through points A with position vector $2 \mathrm{i}+2 \mathrm{k}$ perpendicular to the vector $\mathrm{i}+3 \mathrm{j}-2 \mathrm{k}$ is $x+3 y-2 z+10=0$
(b) (i) Show that the vector $2 \mathrm{i}-5 \mathrm{j}+3.5 \mathrm{k}$ is perpendicular to the line $\mathbf{r}=2 \mathrm{i}-\mathrm{j}+\lambda(4 \mathrm{i}+3 \mathrm{j}+2 \mathrm{k})$ (ii) Calculate the angle between the vector $3 \mathrm{i}-2 \mathrm{j}+\mathrm{k}$ and the line in (b)(i) above.
3. A point P has coordinates $(1,-2,3)$ and a certain plane has the equation $x+2 y+2 z=8$. The line through P parallel to the line $\frac{x}{3}=\frac{y+1}{-1}=\frac{z+1}{-2}$ meets the plane at a point Q .
4. (a) The line through $\mathrm{A}(1,-2,2)$ and perpendicular to the plane $4 x-y+2 z+12=0$ meets the plane in point B . Find the coordinates of B .
(b) Given that the vectors $\mathbf{a} \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $2 \mathrm{a} \mathbf{i}+\mathrm{a} \mathbf{j}-4 \mathbf{i}$ are perpendicular, find the values of a.
5. Find the equation of the plane through the point $(1,2$, 3) and perpendicular to the vector $\mathbf{r}=4 i+5 j+k$.
6. (a) The vertices of a triangle are $\mathrm{P}(2,-1,5), \mathrm{Q}(7,1$, $3)$ and $\mathrm{R}(13,-2,0)$. Show that $\angle P Q R=90^{\circ}$. Find the coordinates of S if $P Q R S$ is a rectangle.
(b) Find the equation of the line through $\mathrm{A}(2,2,5)$ and $\mathrm{B}(1,2,3)$
(c) If the line in (b) above meets the line
$\frac{x-1}{1}=\frac{y-2}{0}=\frac{z-1}{3}$ at P , find the:
(i) coordinates of P ,
(ii) angle between the two lines
7. The position vector of points P and Q are $2 \mathrm{i}-3 \mathrm{j}$ and 3 i $-7 \mathrm{j}+12 \mathrm{k}$ respectively. Determine the length of $\mathrm{PQ} . \mathrm{PQ}$ meets the plane $4 x+5 y-2 z=5$ at point S. Find:
(a) the coordinates of S,
(b) the angle between PQ and the plane.
8. (a) Find the angle between the line $\mathbf{r}=3 \mathrm{k}+\lambda(7 \mathrm{i}-\mathrm{j}+$
$4 \mathrm{k})$ and the plane $\mathbf{r} \cdot(2 \mathrm{i}-5 \mathrm{j}-2 \mathrm{k})=8$
(b) Show that the lines with vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=(1+4 \lambda) i+(1-\lambda) \mathrm{j}+(2 \lambda) \mathrm{k}, \text { and } \\
& \mathbf{r}_{2}=(5+3 \mu) \mathrm{i}+(2 \mu) \mathrm{j}+(2-5 \mu) \mathrm{k}
\end{aligned}
$$

intersect at right angles and give the position vector of the point of intersection.
9. Find the equation of the line with directrix vector \mathbf{d} which passes through the point with position vector a given that
(a) $\mathbf{a}=i+2 j-k, \quad \mathbf{d}=3 i-k$
(b) $\mathbf{a}=4 i-3 k, \mathbf{d}=i-3 j+3 k$
10. Find the vector equation of the line which passes through the points with (a) position vectors $3 i-3 j+k$ and $-2 j+j+k$.
(a) position vector $i+4 j$ and $3 i-j+2 k$,
(b) coordinates $(0,6,-6)$ and $(5,-7,2)$
(c) coordinates $(0,0,0)$ and $(5,-2,3)$
11. Write down in parametric form the vector equations of the planes through the given points parallel to the given pairs of vectors.
(a) $(1,-2,0) ; i+3 \mathrm{j}$ and $-\mathrm{j}+2 \mathrm{k}$
(b) the origin; $2 \mathrm{i}-\mathrm{j}$ and $-\mathrm{i}+2 \mathrm{j}-7 \mathrm{k}$
(c) $(3,1,-1) ; \mathrm{j}$ and $\mathrm{i}+\mathrm{j}+\mathrm{k}$.
12. Find a vector equation for the plane passing through the points with position vectors $2 k, i-3 j+k$ and $5 i+$ $2 j$.
13. Find the vector equation of the plane through the points $\mathrm{A}(1,0,-2)$ and $\mathrm{B}(3,-1,1)$ which is parallel to the line with vector equation $\mathbf{r}=3 i+(2 \lambda-1) j+(5-$ $\lambda) k$. Hence find the coordinates of the point of intersection of the plane and the line $\mathbf{r}=\mu i+(5-\mu) j$ $+2 \mu-7) k$.
14. Find a vector equation for the line joining the points
(a) $(2,6)$ and $(5,2)$
(b) $(-1,2,-3)$ and $(6,3,0)$.
15. (a) Points A and B have coordinates $(4,1)$ and $(2,-5)$ respectively. Find a vector equation for the line which passes through A and perpendicular to the line AB.
(b) Points P and Q have coordinates $(3,5)$ and $(-3,-7)$ respectively. Find a vector equation for the line which passes through the point P and which is perpendicular to the line PQ
16. Find a vector equation for the perpendicular bisector of the points:
(a) $(6,3)$ and $(2,-5)$
(b) $(7,-1)$ and $(3,-3)$
17. Points P, Q and R have position vectors $4 i-4 j, 2 i+$ 2 j , and $8 \mathrm{i}+6 \mathrm{j}$ respectively.
(a) Find a vector equation for the line L_{1} which is the perpendicular bisector to the points P and Q
(b) Find a vector equation for the line L_{2} which is the perpendicular bisector to the points A and R .
(c) Hence find the position vector of the point where L_{1} and L_{2} meet.
18. Two lines L_{1} and L_{2} have equations $L_{1}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}0 \\ -1 \\ -3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)$ and $L_{2}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.
(a) Show that L_{1} and L_{2} are concurrent (meet at a common point) and find the position vector of their point of intersection.
(b) Find the angle between L_{1} and L_{2}.
19. Points P, Q, and R have coordinates $(-1,1),(4,6)$ and $(7,3)$ respectively.
(a) Show that the perpendicular distance from the point R to the point $P Q$ is $3 \sqrt{2}$.
(b) Deduce that the area of the triangle PQR is 15 sq.units.
20. Points A, B and C have position vectors $-i+3 j+9 k$, $5 \mathrm{i}+6 \mathrm{j}-4 \mathrm{k}$ and $4 \mathrm{i}+7 \mathrm{j}+5 \mathrm{k}$ respectively. P is the point on AB such that $\overrightarrow{A P}=\lambda \overrightarrow{A B}$. Find:
(a) $\overrightarrow{A B}$
(b) $\overrightarrow{C P}$
(c) Find the perpendicular distance from the point C to the line AB .
21. Two lines L_{1} and L_{2} have vector equations
$\mathbf{r}_{1}=(2-3 \lambda) \mathrm{i}+(1+\lambda) \mathrm{j}+4 \lambda \mathrm{k}$
$\mathbf{r}_{2}=(-1+3 \lambda) \mathrm{i}+3 \mathrm{j}+(4-\lambda) \mathrm{k}$ respectively. Find:
(a) the position vector of their common point of intersection.
(b) the angle between the lines.
22. Find the equation of the plane containing points $\mathrm{P}(1$, $1,1), \mathrm{Q}(1,2,0)$ and $(-1,2,1)$.
23. Find the equation of the plane containing point ($4,-2$, 3) and parallel to the plane $3 x-7 z=12$
24. Show that the point with position vector $7 \mathrm{i}-5 \mathrm{j}-4 \mathrm{k}$ lies in the plane $r=4 i+3 j+2 k+\lambda(i-j-k)+\mu(2 i+$ $3 \mathrm{j}+\mathrm{k})$. Find the point at which the line $x=y-1=2 \mathrm{z}$ intersects the plane $4 x-y+3 z=8$.
25. Find the parametric equations for the line through the point $(0,1,2)$ that is parallel to the plane $x+y+z=2$ and perpendicular to the line $x=1+t, y=1-t, z=$ $2 t$.
26. Find the distance between the parallel planes
$\mathrm{z}=x+2 y+1$ and $3 x+6 y-3 z=4$
27. Two planes are given by the parametric equations

$$
\begin{aligned}
& x=r+3 \quad \text { and } \quad x=1+r+s \\
& y=3 \mathrm{~s} \\
& z=2 r
\end{aligned} \quad \text { and } \quad y=2+r+\quad \text { and } \quad z=-3+5
$$

Find the Cartesian equation of the intersection point.
28. The equation of a plane P is given by $r \cdot\left(\begin{array}{l}2 \\ 6 \\ 9\end{array}\right)=33$,
where r is the position vector of P. find the perpendicular distance from the plane to the origin.
29. The line through point $\mathrm{P}(1,-2,3)$ and parallel to the line $\frac{x}{3}+\frac{y+1}{-1}=z+1$ meets the plane $x+2 y+278$ at Q . find the coordinates of Q .
30. (a) Find the angle between the plane $x+4 y-z=72$ and the line $\mathbf{r}=9 \mathrm{i}+6 \mathrm{j}+8 \mathrm{k}$.
(b) obtain the equation of the plane that passes through $(1,-2,2)$ and perpendicular to the line $\frac{x-9}{4}=\frac{y-6}{-1}=\frac{z-8}{1}$
(c) Find the parametric equations of the line of intersection of the plane $x+y+z=4$ and $x-y+2 z+2=0$
31. Find the point of intersection of the three planes $2 x-$ $y+3 z=4,3 x-2 y+6 z=3$ and $7 x-4 y+5 z=11$.
32. Find the Cartesian equation of the plane with parametric vector equation $\mathbf{r}=\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
33. Find the Cartesian equation of the plane containing the point with position vector $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$ and parallel to the vectors $\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$.
34. Find the Cartesian equation of the plane containing the points with position vectors $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right),\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -3 \\ 3\end{array}\right)$.
35. Find the perpendicular distance from the plane $\mathbf{r} .(2 i-$ $14 j+5 k)=10$ to the origin.
36. Find the position vector of the point where the line $\mathbf{r}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}5 \\ 3 \\ 2\end{array}\right)$ meets the plane $\mathbf{r} \cdot\left(\begin{array}{c}2 \\ -1 \\ -3\end{array}\right)=15$.
37. Two lines have vector equations $\mathbf{r}=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{l}4 \\ 4 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$. Find the position vector of the point of intersection of the two lines and the Cartesian equation of the plane containing the two lines.
38. The position vector of points P and Q are $3 i-j+2 k$ and $2 i+2 j+3 k$, respectively. Find the acute angle between PQ and the line $1-x=\frac{y-3}{2}=\frac{4-z}{4}$.
(b) Find the point of intersection of the line $x-2=2 y$ $+1=3-z$ and the plane $x+2 y+z=3$.
(c) Find the equation of the plane through the origin parallel to the lines $\mathbf{r}=3 \mathrm{i}+3 \mathrm{j}-\mathrm{k}+s(\mathrm{i}-\mathrm{j}-2 \mathrm{k})$ and \mathbf{r} $=4 \mathrm{i}-5 \mathrm{j}-8 \mathrm{k}+t(3 \mathrm{i}+7 \mathrm{j}-6 \mathrm{k})$
39. (a) The points A and B have position vectors $\mathbf{a}=2 i-$ $j+6 k$ and $\mathbf{b}=7 i-6 j+k$ respectively. Find the coordinates of a point P which divides the vector AB in the ratio:
(i) $4: 1$
(ii) $1: 4$
40. (b) Find the Cartesian equation of the plane through the origin parallel to the lines $x-3=3-y=\frac{z+1}{-2}$ and $\frac{x-4}{3}=\frac{y+5}{7}=\frac{x+8}{-6}$
(c) Find the angle between the line $1-x=\frac{y-3}{2}=\frac{4-z}{4}$ and the plane $2 x-3 y-2 z+5=0$.
41.(a) Determine the unit vector perpendicular to the plane containing the points $\mathrm{A}(0,2,-4)$,
$\mathrm{B}(2,0,2)$ and $\mathrm{C}(-8,4,0)$.
(b) Find the equation of the plane in (a) above
(c) Show that the point $\mathrm{T}(5,-4,3)$ lies on the plane in (a) above.
(d) Write down the equation in the form $\mathbf{r}=a+\lambda \mathrm{b}$ of the perpendicular through the point $\mathrm{P}(3,4,2)$ to the plane in (a) above.
(e) If the perpendicular meets the plane in (a) above at N , determine vector NP .

