DIFFERENTIATION 1
 DIFFERENTIATION FROM FIRST PRINCIPLES:

Examples:
Differentiate the following functions from first principles.
(a) $y=x^{2}$

DIFFERENTIATION RULES:
For any integer n if $y=x^{n}$, then $\frac{d y}{d x}=n x^{n-1}$.
In words we can say "multiply by the power and reduce the power by $1^{\prime \prime}$
General rules:
If $y=k u$, where k is a constant and u is a function of x, then $\frac{d y}{d x}=k \frac{d u}{d x}$.
If $y=u+v$, where u and v are functions of x, then $\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$.
GRADIENT OF A CURVE AT A POINT:

1. The gradient of a curve $y=x^{2}+a x+b$ at the point $(2,6)$ is 7 . Find the values of a and b.
$(3,-4)$
2. The gradient of the curve $y=a x^{2}+\left(b / x^{2}\right)$ at the point $(1 / 2,5 / 2)$ is -6 . Find the values of a and b.
3. Find the gradient of the curve $y=x^{2}+7 x-2$ at the point $(2,16)$
4. Find the points on the curve $y=x^{3}+3 x^{2}-6 x-10$ where the gradient is 3 . $(-3,8),(1,-12)$

TANGENTS AND NORMALS:

1. Find the equation of tangent and normal to the curve $y=x^{2}-4 x+1$ at the point $(-2,13)$.

$$
(y+8 x+3=0,8 y=x+106)
$$

2. Find the equation of tangent and normal to the curve $y=x^{3}-2 x-3$ at $(0,-3)$.

$$
(y+2 x+3=0,2 y=x-6)
$$

3. Find the coordinates of the point on the curve $y=x^{2}-6 x+3$ where the tangent is parallel to the line $y=2 x+3 . \quad(4,-5)$
4. Find the equation of tangent to the curve $y=x^{3}-9 x^{2}+20 x-8$ at the point $(1,4)$. At what points on the curve is the tangent parallel to the line $y+4 x-3=0$?

$$
y=5 x-1,(2,4) \text { and }(4,-8)
$$

5. Find the coordinates of the point on the curve $y=x-x^{2}$ where the tangent is parallel to the line $2 y+x-3=0$.
(3/4,3/16)
6.
7. Find the coordinates of the point on the curve $y=3 x^{2}-9 x+10$ where the normal is parallel to the line $3 y-x+4=0$.
8. T is a tangent to the curve $y=x^{2}+6 x-4$ at $(1,3)$ and N is the normal to the curve $y=x^{2}-6 x+18$ at $(4,10)$. Find the coordinates of the point of intersection of T and N .
$(2,11)$
9. The tangent to the curve $y=a x^{2}+b x+2$ at $\left(1, \frac{1}{2}\right)$ is parallel to the normal to the curve $y=x^{2}+6 x+10$ at $(-2,2)$. Find the values of a and $b .(1,-5 / 2)$

SECOND DERIVATIVE OF A FUNCTION:

STATIONARY AND TURNING POINTS OF A CURVE:

1. The curve $y=x^{3}+a x^{2}+b$ has a minimum point at (4,11). Find the coordinates of the maximum point on the curve. $(0,21)$
2. Given that the curve $y=x^{3}+p x^{2}+q x+r$ passes through the point $(1,1)$ and has turning points where $x=-1$ and $x=3$, find the values of p, q and r. $(-3,-9,12)$
3. Find the coordinates of any stationary points on the curve $y=x^{3}-2 x^{2}-4 x$ and distinguish between these points. $\quad \max _{\left(-\frac{2}{3}, \frac{40}{27}\right)} \min _{(2,-8)}$
4. Determine the turning points and their nature of those points on the curve $y=3 x^{3}-6 x^{2}-12 x+20 \quad \min (2,-$ 4), $\max \left(-\frac{2}{3}, 24.4\right)$

CURVE SKETCHING:

1. Sketch the graph of $y=2+x-x^{2}$.
2. Sketch the curve of $y=x^{3}-6 x^{2}+9 x$.
3. Sketch the curve $y=(x+1)(x-3)^{3}$
4. The curve $y=x^{4}+a x^{2}+b x+c$ passes through the point ($1,16)$ and at that point $\quad \frac{d^{2} y}{d x^{2}}=-\frac{d y}{d x}=16$. Find the values of a, b, c and sketch the curve. $(2,-8,5)$
5. Sketch the curve $y=5 x^{4}-x^{5}$.
6. Show that the curve $y=x^{3}-3 x^{2}+6 x-4$ has one point of inflexion and find the gradient of the curve at this point. Sketch the curve. $(1,0), 3$.
7. Find the coordinates of any stationary points on the curve $y=x^{4}+2 x^{3}$ and distinguish between them. Hence sketch the curve. $\quad \min _{\left(-\frac{3}{2}, \frac{27}{16}\right)}$ inflexion $(0,0)$.
8. Find the coordinates of any stationary points on the curve $y=5 x^{6}-12 x^{5}$ and distinguish between them. Hence sketch the curve. $\min (2,-64)$, inflexion $(0,0)$
9. Find the coordinates and nature of any turning points on the curve $y=x^{3}+3 x^{2}-9 x+6$. Hence sketch the curve. $\min (1,1), \max (-3,33)$.

COMPOSITE FUNCTIONS:

1. Find $\frac{d y}{d x}$ if $y=(2 x+1)^{5} \quad 10(2 x+1)^{5}$
2. Find $\frac{d y}{d x}$ if $y={\sqrt{\left(1-\frac{1}{x^{2}}\right)^{3}}}^{3} \quad \frac{3}{x^{3}} \sqrt{\left(1-\frac{1}{x^{2}}\right)}$
3. Differentiate $\frac{1}{1+x^{3}}$

$$
-\frac{3 x^{2}}{\left(1+x^{3}\right)^{2}}
$$

4. Find $\frac{d y}{d x}$ if $y=\left\{1+\left(x^{2}-1\right)^{3}\right\}^{1 / 3} \quad \frac{2 x\left(x^{2}-1\right)^{2}}{\left\{1+\left(x^{2}-1\right)^{3}\right\}^{2 / 3}}$
5. Find $\frac{d y}{d x}$ if $y=\left(3 x^{2}-2\right)^{4} \quad 24 x\left(3 x^{2}-2\right)^{3}$
6. Find $\frac{d y}{d x}$ if $y=\frac{1}{\sqrt{\left(x^{2}-2\right)}}$

$$
-\frac{x}{\left(x^{2}-2\right)^{3 / 2}}
$$

7. Find $\frac{d y}{d x}$ if
$\begin{array}{ll}\text { (a) } y=\left(4 x^{3}-7 x\right)^{6} & \left.\text { (b) } y=\sqrt{\left(5 x-2 x^{2}\right.}\right)\end{array}$
(C) $y=\frac{1}{3 x^{3}-4 x}$
(a) $6\left(4 x^{3}-7 x\right)^{5}\left(12 x^{2}-7\right)$
(b) $\frac{5-4 x}{2 \sqrt{\left(5 x-2 x^{2}\right)}}$
(c) $\frac{4-9 x^{2}}{\left(3 x^{3}-4 x\right)^{2}}$
8. Find the equation of the tangent and normal to the curve $y=\frac{5}{x^{2}-3}$ at the point $(2,5)$.

$$
(y+20 x=45,20 y=x+98)
$$

9. Find the gradient of the curve $y=\left(2 x^{2}-1\right)^{3}$ at the point where $x=-1$. Hence find the equation of the tangent to the curve at this point. $(-12,12 x+y+11=0)$
10. Find the turning points on the curve $y=x(5-x)^{4}$ and determine their nature. Sketch the curve.
$(1,256)$ max , $(5,0)$ min.
11. Find any turning point on the curve $4 /\left(x^{2}-2 x+5\right)$ and show that the x-axis is an asymptote to the curve. Hence sketch the curve. (1,1) max.
12. Find the coordinates of any stationary points on the curve $y=(3 x-1)^{4}$ and state the nature of any such points. $\min \left(\frac{1}{3}, 0\right)$

PRODUCT AND QUOTIENTS:

1. Find $\frac{d y}{d x}$ if $y=\left(x^{2}+4\right)\left(x^{5}+7\right)$

$$
\left(7 x^{6}+20 x^{4}+14 x\right)
$$

2. Differentiate the following with respect to x :
(a) $y=x(x+3)^{4}$
(b) $y=(2 x+1)^{3}(x-1)^{4}$

$$
\text { (a) }(x+3)^{3}(5 x+3)
$$

(b) $2(2 x+1)^{2}(x-1)^{3}(7 x-1)$
3. Differentiate the following with respect to x :
$\begin{array}{ll}\text { (a) } y=x^{3}\left(3-x^{4}\right)^{5} & \text { (b) } y=x^{2} \sqrt{(x+3)}\end{array}$

$$
\begin{array}{ll}
\text { (a) } x^{2}\left(3-x^{4}\right)\left(9-23 x^{4}\right) & \text { (b) } \frac{x(5 x+12)}{2 \sqrt{(x+3)}}
\end{array}
$$

4. Find $\frac{d y}{d x}$ if $y=\left(x^{2}-1\right)^{\beta}(3 x+1)^{4}$ $6\left(x^{2}-1\right)^{2}(3 x+1)^{3}\left(5 x^{2}+x-2\right)$
5. Find $\frac{d y}{d x}$ if $y=(x+4) \sqrt{\left(x^{2}-1\right)}$

$$
\left(2 x^{2}+4 x-1\right) / \sqrt{\left(x^{2}-1\right)}
$$

6. Find $\frac{d y}{d x}$ if $y=\frac{x}{x+1}$

$$
\frac{1}{(x+1)^{2}}
$$

7. Differentiate the following with respect to x :

(a) $y=\frac{1-x}{x^{2}+8}$
(b) $y=\frac{4 x+3}{\sqrt{(2 x-1)}}$

$$
\begin{array}{ll}
\text { (a) } \frac{(x-4)(x+2)}{\left(x^{2}+8\right)^{2}} & \text { (b) } \frac{4 x-7}{(2 x-1)^{3 / 2}}
\end{array}
$$

8. Differentiate the following with respect to x : (a)

$$
y=\frac{2 x+3}{1-5 x} \quad \text { (b) } y=\frac{(3 x+1)^{4}}{(5 x-2)^{3}}
$$

(a) $\frac{17}{(1-5 x)^{2}}$
(b) $\frac{3(3 x+1)^{3}}{(5 x-2)^{4}}(5 x-13)$
9. Find $\frac{d y}{d x}$ if $y=\sqrt{\frac{x+1}{x^{2}+1}}$

$$
\frac{1-2 x-x^{2}}{2(x+1)^{1 / 2}\left(x^{2}+1\right)^{1 / 2}}
$$

10. If $y=\sqrt{\frac{6 x}{x+2}}$, find the values of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ when $x=4$.
11. Find the maximum and minimum values of the function $y=\frac{4 x}{x^{2}+4} . \quad(-2,-1) \min ,(2,1) \max$.

IMPLICIT FUNCTIONS:

1. Given that $(x+1)^{2}+(y-2)^{2}=1$, find $\frac{d y}{d x}$. $\quad-\frac{x+1}{y-2}$
2. Find the gradient of the curve $x^{3}+y^{3}=4 y^{2}$ at the point $(2,2)$.
(3)
3. Find $\frac{d y}{d x}$ if $y^{3}-x y^{2}-x^{3}=1$. $\quad \frac{3 x^{2}+y^{2}}{3 y^{2}-2 x y}$
4. If $y^{3}+x^{3}=3 x+7$, show that $y^{2} \frac{d^{2} y}{d x^{2}}+2 y\left(\frac{d y}{d x}\right)^{2}+2 x=0$.
5. Find the equation of tangent to the curve $x^{2}+2 x y-2 y^{2}+x=2$ at the point $(-4,1)$.
6 . Find the equation of the tangent to the curve $(x+1) y^{2}=x-2$ at the point $(-2,2)$.

$$
(4 y=3 x+14)
$$

7. If $x^{2}-y^{2}=1$, prove that $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=1$.
8. If $y^{2}-2 x y=2 x$, prove that $(x-y) \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2}=0$.
9. Given that $(x+y)=(x-y)^{2}$; prove that $1-\frac{d y}{d x}=\frac{2}{2 x-2 y+1}$. Hence or otherwise, prove that $\frac{d^{2} y}{d x^{2}}=\left(1-\frac{d y}{d x}\right)^{3}$.
10. Prove that if $\left.y=\sqrt{\left(3 x^{2}+2\right.}\right)$, then $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=3$.
11. Find the values of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(1,3)$ on the curve $3 x^{2}+y^{2}=4 y . \quad(-3,-12)$
12. If $x^{2}+y^{2}=2 y$, prove that $\frac{d^{2} y}{d x^{2}}=\frac{1}{(1-y)^{3}}$.
13. Find $\frac{d y}{d x}$ in terms of x and y : (a) $y^{3}+6 x=x^{2}$

$$
\begin{equation*}
3 y^{2}+2 y+x y=x^{3} \tag{b}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { (a) } \frac{2 x-y}{3 y^{2}} & \text { (b) } \frac{3 x^{2}-y}{x+6 y+2}
\end{array}
$$

14. Find the equation of tangent and normal to the curve $3 x^{2}-x y-2 y^{2}+12=0$ at the point $(2,3)$.

$$
(14 y=9 x+24,9 y+14 x=55) .
$$

APPLICATIONS OF MAXIMUM AND MINIMUM

1. A carton of volume Vm^{3} is made from a piece of cardboard as shown below. If the area of cardboard used is $6 \mathrm{~m}^{3}$, find expressions for h and V in terms of x and the value of x which produces a box of maximum volume. $\quad(x=1, V=1)$.
2. 1000 m of fencing is to be used to make a rectangular enclosure. Find the greatest possible area and corresponding dimensions. $\quad\left(l=w=250 \mathrm{~m}, A=6500 \mathrm{~m}^{2}\right)$
3. A company that manufactures dog food wishes to pack the food in closed cylindrical tins. What should be the dimensions of each tin if each is to have a volume of $128 \pi \mathrm{~cm}^{3}$ and the minimum possible area.
$(r=4 c m, h=8 c m$).
4. A lump of modeling clay of volume $72 \mathrm{~cm}^{3}$ is moulded into the shape of a cuboid with edges of length x $\mathrm{cm}, 2 x \mathrm{~cm}$ and y cm . Find the minimum surface area of this cuboid. $\quad\left(108 \mathrm{~cm}^{2}\right)$

5. A closed hollow right circular cone has internal

 height a and the internal radius of its base is also a. A solid circular cylinder of height h just fits inside the cone with the axis of the cylinder lying along the axis of the cone. Show that the volume of the cylinder is $V=\pi h(a-h)^{2}$. If a is fixed, but h may vary, find h in terms of a when V is a maximum. $\quad\left(\frac{1}{3} a\right)$6. A right circular cylinder of height 2 h is contained in a sphere of radius R , the circular edges of the cylinder touching the sphere. The volumes of the cylinder and the sphere are denoted by V and W respectively. Express V in terms of R and h . By finding the maximum value of V , as h varies, show that $v / W \leq 1 / \sqrt{3}$.

$$
V=2 \pi h\left(R^{2}-h^{2}\right)
$$

7. A right circular cylinder is of radius rcm and height pr cm . The total surface area of the cylinder is $\mathrm{Scm}{ }^{2}$ and its volume $V \mathrm{~cm}^{3}$. Find an expression for V in terms of p and S. If the value of S is fixed, find the value of p for which V is a maximum.

$$
\sqrt{\left(\frac{S^{3} p^{2}}{8 \pi(1+p)^{3}}\right)} ; 2
$$

8. A piece of wire 80 cm in length is cut into three parts , two of which are bent into equal circles and the third into a square. Find the radius of the circles if the sum of the enclosed areas is a minimum.

$$
(20 /(\pi+2))
$$

9. A right pyramid having a square base is inscribed in a sphere of radius R , all vertices of the pyramid lying on the sphere. The height of the pyramid is x; show that the four vertices forming the base of the pyramid lie on a circle of radius r, where $r^{2}=2 R x-x^{2}$. Hence or otherwise, show that the volume V , of the pyramid is given by the formula $V=\frac{2}{3} x^{2}(2 R-x)$. If R is fixed but x may vary, find the greatest possible value of V . $\quad \frac{64}{81} R^{3}$.
10. A cylinder of volume V is to be cut from a solid sphere of radius R. Prove that the maximum value of V is $\frac{4 \pi R^{3}}{3 \sqrt{3}}$.
11. Find the height of a right circular cylinder of greatest volume which can be cut from a sphere of radius a. $\quad \frac{2 a}{\sqrt{3}}$
12. A hemispherical bowl of radius a cm is initially full of water. The water runs out of a small hole at the bottom of the bowl at a constant rate which is such that it would empty the bowl in 24s.Given that , when the depth of the water is $\frac{1}{3} \pi \pi^{2}(3 a-x) \mathrm{cm}^{3}$; prove that the depth is decreasing at a rate of $a^{3} / 36 x(2 a-x) \mathrm{cms}^{-1}$. Find after what time the depth of water is $\frac{1}{2}$ acm, and the rate at which the water level is then decreasing. $\left(16.5 s, a / 27 \mathrm{cms}^{-1}\right)$
13. A square of side xcm is cut from each of the corners of a rectangular piece of cardboard 15 cm by 24 cm . The cardboard is then folded to form an open box of depth xcm. Show that the volume of the box is $\left(4 x^{3}-78 x^{2}+360 x\right) \mathrm{cm}^{3}$. Find the value of x for which the volume is a maximum.

RATES OF CHANGE:

1. A piece of paper is burning round the circumference of a circular hole. After t seconds, the radius rcm of the hole is increasing at the rate $0.5 \mathrm{cms}^{-1}$. Find the rate at which the area $A \mathrm{~cm}^{2}$, of the hole is increasing when $r=5 . \quad\left(5 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$
2. Water is being poured into a conical vessel at a rate of $10 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. After t seconds, the volume $\mathrm{Vcm}{ }^{3}$, of water in the vessel is given by $v=\frac{1}{6} \pi x^{3}$; where xcm is the depth of water. Find, in terms of x, the rate at which water is rising. $\quad\left(20 / \pi x^{2}\right) \mathrm{cms}^{-1}$
3. Water runs into a conical vessel fixed with its vertex downwards at the rate of $3 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, filling the vessel to a depth of 15 cm in a time of one minute. Find the rate at which the depth of water in the vessel is increasing when the water has been running for 7.5 seconds. $\left(\frac{1}{3} \mathrm{cms}^{-1}\right)$
4. A large container in the shape of a right circular cone of height 10 m and base radius 1 m is catching the drips from a tap leaking at the rate of $0.1 \mathrm{~m}^{3}$ per minute. Find the rate at which the surface area is increasing when the water is half way up the cone.

$$
\left(0.04 m^{2} \min ^{-1}\right)
$$

5. Suppose the volume of the cylinder disc is $54 \mathrm{~mm}^{3}$, what will the dimensions of the cylinder if the surface area is minimum.

$$
(r=3 m, h=6 m)
$$

6. If the radius of a sphere is increasing at $2 \mathrm{cms}^{-1}$, find the rate at which the volume of the sphere is increasing when the radius is 3 cm .
7. Water is pumped in an empty trough which is 200 cm long, at the rate of $33000 \mathrm{cms}^{-1}$. The uniform crosssection of the trough is an isosceles trapezium with hypotenuse 50 cm , short side 80 cm and long side 140 cm . Find the rate at which the depth of the water is increasing when the depth is 20 cm .

$$
\left(\frac{3}{2} \operatorname{cms}^{-1}\right)
$$

8. When the radius of sphere is 21 cm , the radius is increasing at a rate of $0.01 \mathrm{cms}^{-1}$, find the rate at which the surface area and volume are increasing at this point. $\quad(\pi=22 / 7)$

$$
\left(5.28 \mathrm{~cm}^{2}, 55.44 \mathrm{~cm}^{3}\right)
$$

9. A hollow right circular cone has base radius 4 m and vertical height 20 m . It is held upside down with its
axis vertical. It contains water which is being added at a constant rate of $1.5 \mathrm{~m}^{3}$ per minute and which leaks away through a small hole in vertex at a constant rate of $2 \mathrm{~m}^{3}$ per minute. At what rate is the depth of water changing when the depth is 12 m ?

$$
\left(0.03 m \min ^{-1}\right)
$$

10. A container is in the shape of a cone of semivertical angle 30°, with its vertex downwards. Liquid flows into the container at the rate of $\frac{\sqrt{3}}{4} \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. At the instant when the radius of the circular surface of the liquid is 5 cm , find the rate of increase in
(a) the radius of the circular surface of the liquid. ($0.01 \mathrm{cms}^{-1}$)
(b) the area of the circular surface of the liquid.
$\left(0.1 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$

SMALL CHANGES AND ERRORS:

1. In an experiment, the diameter xcm of a sphere is measured and volume $V \mathrm{~cm}^{3}$, calculated using the formula $v=\frac{1}{6} \pi x^{3}$. If the diameter is found to be 10 cm with a possible error of 0.1 cm , estimate the possible error in the volume calculated from this reading. ($5 \mathrm{\pi cm} \mathrm{~m}^{3}$)
2. Suppose the error in measuring the radius of a circle is 0.02 , find the percentage error made in measuring the area of circle.
3. If $y=2 x^{2}-3 x$, find the approximate change in y when x increases from 6 to 6.02. (0.042)
4. In calculating the area of a circle, it is known that an error of $\pm 3 \%$ could have been made in the measurement of the radius. Find the possible percentage error in the area. $\quad(\pm 6 \%)$
5. The time T seconds taken for one complete swing of a pendulum, length m, is given by $T=2 \pi \sqrt{\frac{l}{g}}$ where g is a constant. If a 1% error is made in measuring the length of a pendulum, estimate the percentage error in the value of T.
6. Find an approximate value for $\sqrt[3]{1003}$.
(10.01)
7. Find an approximate value for $\sqrt{(16.08)}$
(4.01)
8. Find an approximate value of $\sqrt{(101)}$
(10.05)
9. Find the cube root of 64.08
(4.001)

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS:

1. Differentiate (a) $\sin ^{3} x$
(b) $\cos (4-3 x)$
(c) $\sin x^{0}$

$$
3 \sin ^{2} x \cos x, 3 \sin (4-3 x), \frac{\pi}{180} \cos x^{0}
$$

2. Differentiate
(a) $y=\sin ^{2} x$
(b) $\sin 3 x \cos x$
(c) $\frac{\cos ^{3} 5 x}{6 x}$
(d) $x^{3} \tan 3 x$
(a) $\sin 2 x$
(b) $3 \cos 3 x \cos x-\sin 3 x \sin x$
(c) $\frac{-\cos ^{2} 5 x}{6 x^{2}}(15 x \sin 5 x+\cos 5 x)$
(d) $3 x^{2}\left(\tan 3 x+x \sec ^{2} x\right)$
3. Find $\frac{d y}{d x}$ if (a) $y=\sin 4 x$
(b) $y=\cos \left(x^{3}-1\right)$
(a) $4 \cos 4 x$
(b) $-3 x^{2} \sin \left(x^{3}-1\right)$
4. Find $\frac{d y}{d x}$ if
(a) $y=\tan ^{5} x$
(b) $y=\sec ^{3} x$
$\left(5 \tan ^{4} x \sec ^{2} x, 3 \sec ^{3} x \tan x\right)$
5. Find $\frac{d y}{d x}$ if $y=\cot ^{4}\left(3 x^{2}+2 x-1\right)-8(3 x+1) \cot ^{3}\left(3 x^{2}+2 x-1\right) \operatorname{cosec}^{2}\left(3 x^{2}+2 x-1\right)$
6. Find $\frac{d y}{d x}$ if (a) $y=\sin ^{2} x \cos 3 x$
(b) $y=\frac{\sin ^{4} 3 x}{6 x}$
(a) $\sin x(2 \cos 3 x \cos x-3 \sin x \sin 3 x)$
(b) $\frac{\sin ^{3} 3 x}{6 x^{2}}(12 \cos 3 x-\sin 3 x)$
7. Find $\frac{d y}{d x}$ if (a) $y=x^{2} \sin x$ (b) $y=x \sin x \cos x$
(a) $2 x \sin x+x^{2} \cos x$
(b) $\sin x \cos x+x\left(\cos ^{2} x-\sin ^{2} x\right)$
8. Find $\frac{d y}{d x}$ when
$\begin{array}{ll}\text { (a) } y=\frac{\sin x}{x} & \text { (b) } \frac{1+\sin x}{1-\sin x} \text { (c) } \frac{\sin x-\cos x}{\sin x+\cos x}\end{array}$
(a) $\frac{x \cos x-\sin x}{x^{2}}$
(b) $\frac{2 \cos x}{(1-\sin x)^{2}}$
(C) $\frac{2}{(\sin x+\cos x)^{2}}$
9. Find $\frac{d}{d x}$ for (a) $\frac{x}{\tan x}$
(b) $\frac{\sin x}{1+\tan x}$
(c) $\frac{1+\sin ^{2} x}{1-\sin ^{2} x}$
(d) $\sin ^{3} x \sin 3 x$
(a) $\cot x-x \operatorname{cosec}^{2} x$
(b) $\frac{\cos ^{3} x-\sin ^{3} x}{(\sin x+\cos x)^{2}}$
(C) $4 \sec ^{2} x \tan x$
(d) $3 \sin ^{2} x \sin 4 x$
10. If $y=\sqrt{1+\sin x}$, show that $\frac{d y}{d x}=\frac{1}{2} \sqrt{(1-\sin x)}$.
11. If $y=\sqrt{\left(\frac{1+\sin x}{1-\sin x}\right)}$, show that $\frac{d y}{d x}=\frac{1}{1-\sin x}$
12. Find the maximum and minimum value(s) of the function $f(x)=2 \sin x+\cos 2 x$ for $0<x<\pi$. $\quad \max \left(\frac{\pi}{6}, \frac{3}{2}\right),\left(\frac{5}{6} \pi, \frac{3}{2}\right)$ $\min \left(\frac{\pi}{2}, 1\right)$
13. If $y^{2}=\tan 2 x+\sec 2 x$, show that $\frac{d y}{d x}=y \sec 2 x$. State any assumption made.
14. If $y=\frac{\sin x}{x}$, prove that $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+x y=0$.

DIFFERENTIATION OF INVERSE TRIGONOMETRIC

 FUNCTIONS:1. Find $\frac{d y}{d x}$ if $y=\sin ^{-1}(3 x-1)$.

$$
\frac{3}{\sqrt{\left(6 x-9 x^{2}\right)}}
$$

2. Differentiate : (a) $\sin ^{-1} x$
(b) $\cos ^{-1} x$ (c) $\tan ^{-1} x$
(a) $\frac{1}{\sqrt{\left(1-x^{2}\right)}}$
(b) $-\frac{1}{\sqrt{\left(1-x^{2}\right)}}$
(c) $\frac{1}{1+x^{2}}$
3. Differentiate : (a) $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ (b) $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$

DIFFERENTIANTING EXPONENTIAL FUNCTIONS:

1. Find $\frac{d y}{d x}$ when $y=e^{3 x^{2}}$

$$
6 x e^{3 x^{2}}
$$

2. Differentiate: (a) $e^{2 x} \sin 3 x$
(b) $e^{x^{2}}$
(a) $e^{2 x}(2 \sin 3 x+3 \cos x)$
(b) $2 x e^{x^{2}}$
3. Differentiate $e^{x^{2}+1}$ with respect to x .
4. Sketch the curve $y=x^{2} e^{-x}$.
5. If $y=e^{x} \sin x$, show that $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$.
6. If $e^{x} y=\sin x$, show that $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0$.
7. If $y \cos x=e^{x}$, show that $\frac{d^{2} y}{d x^{2}}-2 \tan x \frac{d y}{d x}-2 y=0$.
8. If $\sin y=2 \sin x$, show that $\cot y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}+1=0$.
9. A particle moves in a straight line so that after t seconds its distance from a fixed point O is s metres, where $s=t^{2} e^{2-t}$. Find the distance of the particle from O when it first comes to rest and its acceleration at that point. $\quad\left(4 m,-2 m s^{-2}\right)$
10. Find the values of x for which the function $\left(x^{2}-2 x-1\right) e^{2 x}$ has maximum or minimum values, distinguish between them.

$$
\max (x=-1), \min (x=2) .
$$

11. If $y=x e^{-x}$, show that $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$.
12. If $y=e^{x} \sin x$, show that $\frac{d^{2} y}{d x^{2}}=2 e^{x} \sin \left(x+\frac{\pi}{2}\right)$
13. If $y=e^{-2 x} \cos 4 x$, prove that $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+20 y=0$.
14. Show that $e^{\ln x}=x$ and that $e^{-2 \ln x}=x^{-2}$.

DIFFERENTIATION OF LOGARITHMIC FUNCTIONS:

1. Solve the equation $e^{x}-2-3 e^{-x}=0 . \quad(\ln 3)$
2. Differentiate (a) $\ln \sec x$ (b) $x^{2} \ln x \quad$ (c) $x(\ln x-1)$
(a) $-\ln \cos x$
(b) $x(1+2 \ln x)$
(c) $\ln x$
3. Differentiate $\ln \left(x^{2}+1\right)$

$$
\frac{2 x}{x^{2}+1} .
$$

4. Differentiate (a) $\ln \sqrt{\frac{x^{2}-1}{x^{2}+1}}$
(b) $\ln \left(x+\sqrt{x^{2}+1}\right)$
(a) $\frac{2 x}{x^{4}-1}$
(b) $\frac{1}{\sqrt{x^{2}+1}}$
$\begin{array}{lll}\text { 5. Differentiate }\left(\begin{array}{ll}\text { (a) } \ln \left(\frac{x}{\sqrt{x^{2}+1}}\right) & \text { (b) } \ln (x \sqrt{x+1})\end{array}\right. & \text { (c) } \ln \left(\frac{x}{(x-1)^{2}}\right)\end{array}$
(a) $\frac{1}{x\left(x^{2}+1\right)}$
(b) $\frac{3 x+2}{2 x(x+1)}$
(c) $\frac{1+x}{x(1-x)}$
5. Differentiate (a) $\ln (\sec x+\tan x)$
(b) $\ln \left(\frac{\sin x+\cos x}{\sin x-\cos x}\right)$
(a) $\sec x$
(b) $2 \sec 2 x$
6. Differentiate (a) $\ln \sqrt{\frac{1-x}{1+x}} \quad$ (b) $\ln \left(x \sqrt{x^{2}-1}\right) \quad$ (c) $\ln \frac{(x+1)^{2}}{\sqrt{x-1}}$
(a) $\frac{1}{x^{2}-1}$
(b) $\frac{2 x^{2}-1}{x\left(x^{2}-1\right)}$
(c) $\frac{3 x-5}{2\left(x^{2}-1\right)}$
7. Differentiate (a) $x \ln y \quad$ (b) $y \ln x \quad$ (c) $\frac{\ln x}{x^{2}} \quad$ (d) $\frac{x}{\ln x}$
(a) $\ln y+\frac{x}{y} \frac{d y}{d x}$
(b) $\frac{y}{x}+\frac{d y}{d x} \ln x$
(c) $\frac{1-2 \ln x}{x^{3}}$
(d) $\frac{\ln x-1}{(\ln x)^{2}}$
8. If $y=\ln \left(\frac{2 x+1}{1-3 x}\right)$, find $\frac{d y}{d x}$

$$
\frac{5}{(2 x+1)(1-3 x)}
$$

10. Differentiate 2^{x} with respect to x. $\left(2^{x} \ln 2\right)$
11. If $y=\frac{x}{\sqrt{\left(x^{2}-2\right)}}$, find $\frac{d y}{d x}$

$$
-\frac{2}{\sqrt{\left(x^{2}-2\right)^{3 / 2}}}
$$

12. Sketch the curve $y=\frac{1}{x} \ln x$.
13. If $y=\ln \left(x^{2}-5\right)$, show that $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=2 e^{-y}$.
14. If $y=\sin 2 x \ln (\tan x)$, show that $\frac{d^{2} y}{d x^{2}}+4 y=4 \cot 2 x$.
15. If $\tan y=\ln x^{2}$, show that $x \frac{d y}{d x}=2 \cos ^{2} y$. Hence show that $x^{2} \frac{d^{2} y}{d x^{2}}+2(1+2 \sin 2 y) \cos ^{2} y=0$
16. Show that if $y=e^{4 x} \cos 3 x$, then $\frac{d^{2} y}{d x^{2}}$ can be expressed in the form $25 e^{4 x} \cos (3 x+\alpha)$. Give the value of $\tan \alpha$.
17. If $f(x)=e^{5 x} \sin 12 x$, show that $f^{\prime}(x)=13 e^{5 x} \sin (12 x+\alpha)$ where $\tan \alpha=12 / 5$.
18. If $y=e^{4 x} \cos 3 x$, prove that $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+25 y=0$.
19. If $y=e^{3 x} \sin 4 x$, show that $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=0$.
20. If $y=x \tan ^{-1} x$, show that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-2 y=2$.
21. Find $\frac{d y}{d x}$ if $y=\ln \left(\frac{3+4 \cos x}{4+3 \cos x}\right) \quad\left(\frac{-7 \sin x}{(3+4 \cos x)(4+3 \cos x)}\right)$
22. Differentiate (a) $x^{\sin x} \quad$ (b) $(\sin x)^{x}$ (c) $x^{y}=\sin x$
(a) $\left(\frac{1}{x} \sin x+\cos x \ln x\right) x^{\sin x}$ (b) $(\ln x+x \cot x)(\sin x)^{x}$
(c) $\ln x \frac{d y}{d x}+\frac{y}{x}=\cot x$
23. If $x=e^{t}$ and $y=\sin t$, show that $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$.
24. Given that $y=\ln (1+\sin x)$, prove that $\frac{d^{2} y}{d x^{2}}+e^{-y}=0$.
