Elementary Programming Principles

Lesson\#3 : Developing Algorithm

Kalema Golooba Ayub agkalema@gmail.com
0772592826
0701692724
www.kalsworld.com
www.sustainablecs.org

Algorithm

\square Refers to a limited number of logical steps that a program follows in order to solve a problem
\square Pseudo code - Refers to a set of statements written in a readable language (English - like) but expressing the processing logic of program.

Guidelines for designing a good pseudocode

1. The statements must be short, clear and readable
2. Pseudocode lines should be clearly outlined and indented clearly.
3. It should show clearly the start and stop of executable statements and control structures
4. Statements must not have more than one meaning
5. The input, output and processing statements should be clearly stated, using keywords such as PRINT, READ, INPUT

Key Words

\square Input: READ, INPUT, OBTAIN, GET
\square Output: PRINT, DISPLAY, SHOW, WRITE
\square Compute: COMPUTE, CALCULATE, DETERMINE, SUM, AVERAGE
\square Initialize: SET, INIT

- Add one: INCREMENT

ㅁ Reduce by1: DECREMENT

Example 1a Pseudocode

Develop an algorithm
for a program that can output the phrase "I am Cool"

START PRINT "I am Cool"
 STOP

Example 1b Pseudocode

Develop an algorithm for a program that can that prompt the user to enter his/her and then output the phase
"Welcome name"

START

PRINT "Please Enter Your Name"
READ Name
PRINT " Welcome Name"

STOP

Example 1c Pseudocode

Develop an algorithm for a program that can that prompt the enter his/her and then output the phases
"Welcome name"
"You are cool"
on two different line

START

PRINT "Please Enter Your Name"

READ Name
PRINT " Welcome Name"
PRINT "You are cool"
STOP

Express Algorithm with Flow Charts

Flow Chart

- A flowchart is a diagrammatic representation of a program's algorithm
- Using both statements and special symbols that have specific meaning
- The symbols are combined with short text clues which are a form of shorthand understood by programmers

1.

2.

3.

4.

Ellipse:

Denotes the beginning and end of the program algorithm.

Parallelogram:

Used to denote an input or output operation. For example, READ A, B, PRINT SUM.

Rectangle:

Indicates that a processing or data transformation is taking place. For example $S U M=A+B$.

Rhombus:

Used to specify a condition. A condition must evaluate to a Boolean value (True or false) for the program to execute the next instructions.
4.

5.

Rhombus:

Used to specify a condition. A condition mı Boolean value (True or false) for the progra next instructions.

Connector:

Used as a connecting point or interface fc from different directions.

Design a flow chart
for for a program that can output the phrase "I am Cool"

START

PRINT "Please enter your name"
Read Name
PRINT " You are welcome name"

Develop an algorithm for a program that can that prompt the enter his/her and then output the phase "Welcome name"

Illustrations
 Lets Get Dirty with Code

\#include <stdio.h>

 int main()\{

printf("You Are Cool");

\}
\#include <stdio.h> int main() \{

printf("I Love My School");

 getch(); getchar(); return 0;\}

\#include <stdio.h>

Int main()

\{

printf("Enter Two Numbers");

\}

\#include <stdio.h>

 int main ()\{

int \mathbf{x};
 printf("Enter Two Numbers");
 scanf("\%d",\&x);
 getch();
 return 0;

\}

Exercise: PERIMETER \& AREA

Write a structured algorithm that would prompt the user to enter the length and width of a rectangle, calculate the area and perimeter then display the result

START

PRINT "Enter Length and Width"
READ L, W
AREA = L * W
PERIMETER = 2(L + W)
PRINT AREA
Print PERIMETER
STOP

Method 2: Pseudocode

Begin

$$
\text { Set } \pi \text { to } \frac{22}{7}
$$

Prompt the user for the radius (R).
Store the radius in a variable
(R)

Set area (A) to $\pi \times R \times R$
Store the area in a variable (A) Print A.

Stop

Comparison between a pseudocode and a flowchart

- Taking our example of calculating the area of a circle mentioned in the earlier subtopic the algorithm by both methods are shown below.

Example Rolex 2

Write a pseudocode for a program that can be used to classify people according Tribe and Profession. If a person is a Musoga, output "Rolex maker", if the person is a Muganda, output "Muyaaye" else output "Falla".

START

PRINT "Enter Your Tribe" INPUT Tribe IF Tribe =Musoga THEN PRINT "Rolex Maker" IF Tribe =Muganda THEN PRINT "Muyaaye" ELSE

PRINT "Falla"
STOP

Example 3

Write a pseudocode for a program that can be used to classify people according to the age limit. If a person is more than 35 years; output "Mature" else output "Youth".

START

PRINT "Enter the age" INPUT AGE IF AGE>35 THEN PRINT"Mature" ELSE PRINT "Youth"

STOP

Example 1

Pseudocode

Write a pseudocode that can be used to prompt the user to enter two numbers, calculate the sum and average of the two numbers and then display the output on the screen.

START

PRINT"Enter two numbers" INPUT X, Y $\mathbf{S U M}=\mathbf{X}+\mathbf{Y}$ AVERAGE = SUM/2 PRINT SUM PRINT AVERAGE

STOP

Example

\square Write a pseudo code that can be used to prompt the user to enter two numbers, calculate the sum and average of the two numbers and then display the output on the screen

IF ... THEN

\square IF ... THEN selection is used if only one option is available.
\square In this case, all other options are ignored

IF mark > = 80 then
Print "Give reward"
ENDIF

IF ...THEN ... ELSE

Binary choice on a given Boolean condition is indicated by the use of four keywords: IF, THEN, ELSE, and ENDIF. The general form is:
IF condition THEN
sequence 1
ELSE
sequence 2
ENDIF

IF ...THEN ... ELSE

IF HoursWorked > NormalMax THEN Display overtime message

ELSE

Display regular time message
ENDIF

Exercise

\square In a football match, if a player does a mistake which is considered serious by the rules of the game, he/she is given a red card. Otherwise, he/she is given a yellow card.

- Use IF ...THEN...ELSE selection to write an algorithms (pseudocode) to illustrate the case above

IF ...THEN ...ELSE

IF fault = serious THEN PRINT "Give Red Card"

ELSE

Print "Give yellow card"
Print yellow card
Print red card
ENDIF
jkizito@ucc.co.ug

- Write a structured algorithm that would prompt the user to enter the length and width of a rectangle, calculate the area and perimeter then display the result.

PROGRAM CONTROL STRUCTURES

... are blocks of statements that determine how statements are to be executed.

In structured programming languages, there are three control structures namely;

1. Sequence,
2. Selection and
3. Iteration (looping)

Sequence

- In this the computer reads instructions from a program file starting from the first top line and proceeding downwards one-by-one to the end. This is called sequenced program execution
- It enables the computer to perform tasks that are arranged consecutively one after another in the code.
Limitation: Most programs that solve real world problems need to enable the computer either to repeat tasks or to make decisions when certain conditions are true or false or to repeat tasts hence the need for selection and iteration

IF ... THEN

- IF ... THEN selection is used if only one option is available. In this case, all other options are ignored.
- For example, in a school environment, the administration may decide to promote only those students who attain a mean mark of 80% and above. Therefore, if a student attains 80% and above, he or she is Promoted while the rest are ignored.

IF ... THEN:

IF ... THEN selection is used if only one option is available. In this case, all other options are ignored

Pseudocode
Is Mark >= 80?
IF mark $>=80$ THEN Print "Promoted"
ENDIF

Question for the Group

Design a program that will prompt a user to enter her age. If the person's age is below 11 years, it should output "Young", if she is from 11 to 19, it should output "Teenager", above 19, it should output "Adult)

Question for the Group - Modified

Design a program that will help a user to catagorise people according to age. If someone is below 11 years, it should output "Young", If the person is from 11 to 19 years, it should output "Teenage", above 19 years, it should output "Mature "Person"
START
PRINT "Please enter your age"
READ Age
IF Age < 11 THEN
PRINT "Young"
ELSE
IF Age < = 19
IF Age > = 11
IF Age > = 11 AND < = 19
IF 11 < =` Age <= 19

```
START
    PRINT "Please enter your age"
    READ Age
    IF Age < }11\mathrm{ THEN
        PRINT "Young"
        ELSE
        IF Age > = 11 AND < = 19 THEN
        PRINT "Teenager"
        ELSE
        PRINT "Adult"
        ENDIF
        ENDIF
STOP
```


Structured Programming

- A method for designing and coding programs in a systematic, organized manner.
- It combines the principles of top-down design, modularity and the use of the three accepted control structures of sequence, repetition and selection.
- Design a flowchart for a program that can be used to classify people according to the age limit. If a person is more than 20 years, output Adult" otherwise output "Young person".
- Draw a flowchart for a program used to prompt the user to enter two numbers. The program should find the sum and average then display the output on the screen.
- Write a pseudocode that can be used to prompt the user to enter two numbers, calculate the sum and average of the two numbers and then display the output on the screen.
-Dev C++

NESTED IF

- Nested IF selection is used where two or more options have to be considered to make a selection. For example, in an Olympics track event, medals are awarded only to the first three athletes as follows:
- Position 1: Gold medal
- Position 2: Silver medal
- Position 3: Bronze medal

IF position $=1$ THEN medal $=$ "Gold"

ELSE
IF position $=2$ THEN medal = "silver"
ELSE
IF position $=3$ THEN medal = "bronze"
ELSE medal $=$ "nil"
ENDIF
ENDIF

Flowchart extract of a nested IF:

WHILE

The WHILE construct is used to specify a loop with a test at the top. The beginning and ending of the loop are indicated by two keywords; WHILE and ENDWHILE. The general form is:

WHILE condition
sequence
ENDWHILE

WHILE

- The loop is entered only if the condition is true
- The "sequence" is performed for each iteration
- At the conclusion of each iteration, the condition is evaluated and the loop continues as long as the condition is true

WHILE : Example

WHILE BankBalance >30,000
Withdraw Cash
Update Bankbalance
ENDWHILE

CASE

CASE

A CASE construct indicates a multiway branch based on conditions that are mutually exclusive. Four keywords, CASE, OF, OTHERS, and ENDCASE, and conditions are used to indicate the various alternatives. The general form is:
CASE expression OF
condition 1 : sequence 1
condition 2 : sequence 2
condition n : sequence n
OTHERS:
default sequence
ENDCASE
The OTHERS clause with its default sequence is optional.
Conditions are normally numbers or characters

CASE

CASE grade OF
A : points = 6
B : points = 5
C : points = 4
D : points = 3
E : points = 2
O : points = 1
F : points = 0
ENDCASE

CASE

CASE Title OF
Mr : Print "Mister"
Mrs : Print "Missus"
Miss : Print "Miss"
Ms : Print "Mizz"
Dr : Print "Doctor"
ENDCASE

REPEAT-UNTIL

- This loop is similar to the WHILE loop except that the test is performed at the bottom of the loop instead of at the top.
- Two keywords, REPEAT and UNTIL are used. The general form is:

REPEAT
sequence
UNTIL condition

REPEAT-UNTIL

- The "sequence" in this type of loop is always performed at least once, because the test is performed after the sequence is executed. At the conclusion of each iteration, the condition is evaluated, and the loop repeats if the condition is false.
- The loop terminates when the condition becomes true.
- The gross salary of employees in KARU ENTERPRISE is based on basic salary and additional benefit as follows
- Employees who have worked for the company for more than 10 years receive an additional pay of 10% to their basic salary
- monthly Salary bonus on monthly sales of books as follows:

Monthly Sales	Bonus Rate (\%)
Above 500,000	15
Between 250,000 and 500,000	10
Below 250,000	5

Draw a flow chart for a program that would be used to calculate the gross salary then output each employee's basic salary, gross salary and all benefits

Control Structures

- Sequence -in sequential order.
- The simplest of control structures - start at the beginning and continue in se quential order.
- Selection - selectively execute statements
- Called a branch, it requires a condition to determine when to execute statements.

Control Structures

-Repetition - repeat statements more than once

- Called a loop, it needs a stop condition, l.e, the program will continue to loop until some condition is met.

Event-Driven Programming

- In an event-driven program, the flow of control is based on the user's clicking on menus and buttons, etc. These user actions are called events.
- Event-driven programming still uses the basic principles of structured programming - program modules, control structures, good programming style, and program testing.

For Code

W`ww.tutorialspoint.com/
file:///C:/My\%20Web\%20Sites/C-
Programming/www.tutorialspoint.com/cprog ramming/c variables.html
httrack

Selection : IF...THEN...ELSE

- IF ... THEN ... ELSE selection is suitable when there are two available options.

IF < condition > THEN
statements;
ELSE
Statements;
ENDIF

- For example, in a football match, if a player does a mistake which is considered serious by the rules of the game, he/she is given a red card. Otherwise, he/she is given a yellow card.

Pseudocode segment

IF fault = serious THEN

PRINT "Give Red Card"

ELSE
Print "Give yellow card"
ENDIF

Nested IF Selection

- Nested IF selection is used where two or more options have to be considered to make a selection. For example, in an Olympics track event, medals are awarded only to the first three athletes as follows:
- Position 1: Gold medal
- Position 2: Silver medal
- Position 3: Bronze medal
- The pseudocode segment and flowchart extract below shows the structure of the Nested IF selection.

Pseudocode Segment

IF position $=1$ THEN
medal = "Gold"

ELSE
IF position $=2$ THEN
medal = "silver"
ELSE

> IF position $=3$ THEN
> medal = "bronze"

ELSE medal $=$ "nil"
ENDIF
ENDIF

Flowchart extract of a nested IF:

- Start
 $\square E n t e r$ "I Love Superman" $\square R e a d$ "I love suprt"
 \square Print ("Love superman") \square Stop

\square Start
 -Print "Enter Your Name"
 \square Read Name
 \square Print "Welcome Name"
 \square Stop

(a) Reasons for using a flowchart other than
a pseudo code for solving a problem
\square A flowchart is easy to interpret and understand
\square A flowchart provides a better/easier understanding of the problem processing logic Flowcharts provide more detail yet readable structure of analyzing a problem.
\square Are more capable of showing the overflow of instructions or data from one process to another.
\square A flowchart provides an easier way of error identification and rectification. They offer/give more efficient program maintenance as they give the programmer which part of the program logic to put emphasis on and can be edited to suite new changes.
\square With flowcharts information needs or problems are analyzed in a more effective way that reduces costs and time wastage
\square One can easily conceptualize the whole program at just a glance from a flowchart.
\square Makes results look attractive and organized

ITAU -

\square ITAU has organised a 2 day CDW for teachers, and want to develop a computerised program to help them bill the participants. Participants may be residential or non residential, and have a choice to attend one or both days.
\square If the participant attends 2 days and is non residential, he pays 50,000 . If the participant attends only one day and is residential, he pays Shs.

