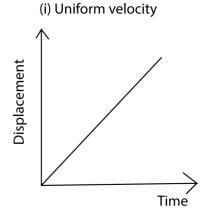
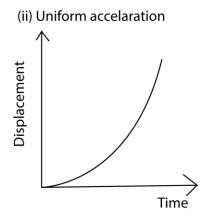


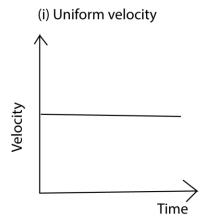
This document is sponsored by

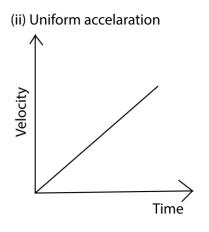

The Science Foundation College Kiwanga- Namanve
Uganda East Africa
Senior one to senior six
+256 778 633 682, 753 802709

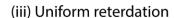

Linear motion

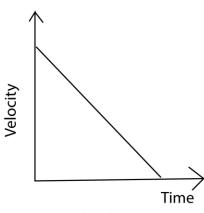
Terms used

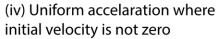
Displacement is the distance moved by a body in a specific direction **Velocity** is the rate of change of displacement **Uniform velocity** is the constant rate of change of displacement **Acceleration** is the rate of change of velocity.

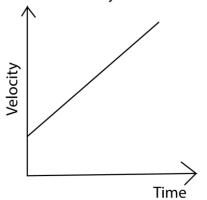

Displacement time graphs

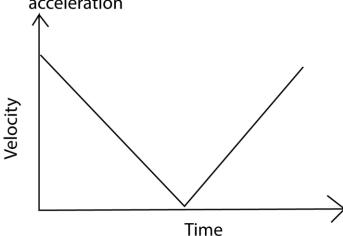





Digital Teachers


Velocity time graph





(v) For body thrown vertically upwards then falls afterwards with a uniform acceleration

Note: when velocity is uniform/constant or maximum, acceleration is zero When the body starts from rest, initial velocity, u=0 When a body comes to the rest, the final velocity, v=0

Equations of motion

Usual symbols

u - initial velocity

v- final velocity

s - displacement

a – acceleration

t – time

If a body's velocity changes from u to v in time t, then

(a)
$$a = \frac{change\ in\ velocity}{time} = \frac{v-u}{t}$$

or

$$v = u + at$$
(i)

As the body's velocity increases steadily

Average velocity =
$$\frac{v+u}{2}$$

(b) Displacement, s = averages velocity x time

$$=\frac{v+u}{2}t$$

But v = u + at

$$S = \frac{(u+at+u)t}{2}$$

$$s = \frac{(2u+at)t}{2}$$

$$s = ut + \frac{1}{2}\alpha t^2$$
 (ii)

From,
$$s = \frac{v+u}{2}t$$

But
$$v = u + at$$

$$t = \frac{v - u}{a}$$

$$s = \frac{v+u}{2} x \frac{v-u}{a}$$

$$v^2 = u^2 + 2as$$
(iii)

Example 1

A motorist travelling at constant speed of 50kmh⁻¹ passes a motor cyclist starting of in the same direction. If the motorist maintains a constant acceleration of 2.8m/s²,

(a) Calculate the time taken by the motorist to catch up with the motorist.

Motorist

$$u_1 = 50 \text{km/hr} = \frac{50 \times 1000}{3600} = \frac{125}{9} \text{ms}^{-1}$$

Distance moved by motorist, $s = \frac{125t}{9} m$

Where t = time taken by motorcyclist to catch up with the motorist

Distance s moved by motorcyclist = $0 + \frac{1}{2} x 2.8t^2$ It implies that

$$\frac{125t}{9} = \frac{1}{2} \times 2.8t^2$$

$$t = 9.9s$$

(b) Speed of motorist as he overtakes the motorist $v = u + at = 0 + 9.9 \times 2.8 = 27.8 \text{ms}^{-1}$

Examples 2

A motor car moving with uniform acceleration covers 5.5m in the 4th second and 9.5m in the 8th second in its motion. Find its acceleration and the initial velocity.

Solution

From $s = ut + \frac{1}{2} at^2$

Distance covered in 4th second = (distance covered in first 4seconds

- distance covered in first 3 second)

$$5.5 = (4u + \frac{1}{2} a \times 4^2) - (3ut + \frac{1}{2} a \times 4^2)$$

 $11 = 2u + 7a$ (a)

Distance covered in 8th second = (distance covered in first 4seconds

- distance covered in first 3 second)

$$9.5 = (8u + \frac{1}{2} a \times 8^2) - (7ut + \frac{1}{2} a \times 7^2)$$

$$19 = 2u + 15a$$
(b)

Solving: $a = 1 \text{ms}^{-2}$; $u = 2 \text{ms}^{-1}$