P. 4 MTC INSTRUCTIONAL MATERIALS \& LOWER CLASS WORK

TOPIC	INSTRUCTIONAL MATERIALS
Set concept	- Charts - Empty boxes - Polythene bags - Bottle tops - Buckets - Counters - Stones - Seeds - Fruits - Pencils - Mabled - Coloured eggs - Letter cards
Numeration system and place values	- Abaci - Number cards - Sticks in bundles i.e. hundreds, tens, ones - Place values charts - Charts showing roman numbers - Number line marked 9, 0.1, 0.2, ... - Stones - Place value charts for decimals - Cut outs - Flash cards with numbers
Operation on numbers	- Stones - Sticks - Seeds - Place value charts - Abaci - Containers for multiplication and division
Number facts and sequences	- Charts - Multiplication table - Number cards - Counters
Fractions	- Oranges - Sugar canes - Paper cut-outs - Charts - Scissors, knives, papers for learners to cut
Graphs and interpretation of information	- Wooden blocks - Tins - Boxes of matches - Squared papers - Metre ruler

	- Graphs drawn on charts - Oranges - Balls - Pens - Books
Geometry	- Wooden plane figures (square, rectangle, kite, rhombus, circle, parallelogram, triangle, pentagon, hexagon) - Wooden solid figures (cube, cubodid, tetrahedron, triangular pyramid, cylinder) - Manilar papers - Scissors - Glue - Chalkboard set - Mathematical set
Measures	- Notes and coins - Pictures showing shopping activities - Classroom shop - Metre ruler - Wall clock - Calendar - Containers - Water - Thermometer
Algebra	- Pencils - Coins - Seeds - Books - Stones - Sticks - charts

LOWER CLASS WORK

SET CONCEPT

1. What is a set?
2. Given that set $A=\{a, b, c, d\}$. How many members are in set A ?
3. What is an empty set?
4. Match members of set P and Q correctly

\mathbf{P}	\mathbf{Q}
A	
B	
C	
D	D A C B

5. Name the set below
\{a, e, i, o, u\} A set of \qquad
6. Given that set $\mathrm{A}=$

Which set has more members?

NUMERATION SYSTEMS AND PLACE VALUES

1. Show the following numbers on the abacus
a) 1245
b) 302
2. What numbers have been shown on the abacus below:
a)

b) $\quad \mathrm{Th} \quad \mathrm{H} \quad \mathrm{T} \quad \mathrm{O}$

3. Write the following in words.
a) 340
b) 4012
4. Complete;
a) $3241=$ \qquad Thousands \qquad hundreds \qquad tens \qquad ones
b) $1023=$ \qquad Thousands \qquad hundreds \qquad tens \qquad ones
5. What is the place value of 3 in 7382 ?
6. Expand 3214 using values
7. What number has been expanded to give $300+20+7$
8. What is the value of 2 in 1234 ?

OPERATION ON NUMBERS.

1. Add: $2+3$
2. Okello is 14 years. John is 16 years. What is their total age?
3. Subtract: 62

$$
\begin{array}{ll}
-2 & 5
\end{array}
$$

4. Find the sum of 16 and 29.
5. What is the difference between 96 and 59?
6. Multiply: 146

$$
\begin{array}{r}
2 \\
\times \quad 2
\end{array}
$$

7. Divide:

$$
7 \longdiv { 2 5 2 }
$$

8. A bus carries 80 passengers in a day. How many passengers will it carry in a week?
9. A school got 243 points in sports and 90 points in cleanliness. How many points did it get altogether?
10. Subtract 20 from 100

NUMBER FACTS AND SEQUENCES.

1. Write the missing numbers
a) $1,2,3$, \qquad 5, \qquad 7
b) $1,3,5$, \qquad
\qquad 11, \qquad
c) $16,14,12$, \qquad
\qquad ,
2. Use multiplication to show $6+6+6+6$
3. Complete the magic square below.

9		7
	6	8
5		3

4. Fill in the blank spaces. $3 \times 4=$ \qquad $+$ \qquad $+$ \qquad
\qquad

FRACTIONS:

1. Define the term fraction
2. Shade $2 / 5$

3. Name the shaded fraction.

4. How many halves are in two wholes?
5. Add: $\underline{2}+\underline{3}+\underline{1}$

$$
9 \quad 9 \quad 9
$$

6. Subtract: $\frac{4}{5}-\frac{1}{5}$
7. Which fraction is bigger, $\underline{1}$ or $\underline{1}$? 23
8. Write the fraction of the unshaded part.

9. What fraction is left after eating $2 / 3$ of an orange?
10. Subtract: $\underline{3}$ from $\underline{5}$

66

GRAPHS AND INTERPRETATION OF DATA / INFORMATION

1. The pictograph below shows the number of balls sold in Mr. Mukasa's shop in a week. Study it carefully and answer questions that follow.

Monday	$\int 3$
Tuesday	
Wednesday	(6)

Key: stands for 10 balls.
a) How many balls were sold on Monday?
b) On which day did he sell the smallest number of balls?
c) In which two days did he sell the same number of balls?
2. The graph below shows the number of mangoes each child got.

a) Who got the biggest number of mangoes?
b) How many mangoes were given to Tim?
c) Which two children got the same number of mangoes?
d) How many mangoes were given out altogether?

GEOMETRY

1. Draw the following shapes:
a) Circle
b) Rectangle
c) Square
d) Kite
e) Oval
f) Trapezium
g) Cone
h) Triangle
2. Name the shapes below.
a)

b)

c)

MEASURES:

Money

Study the shop list below and answer questions that follow.

ITEM	PRICE
Soap	Shs. 700 a bar

Book	Shs. 300 a book
Pens	Shs. 200 a pen
Sugar	Shs. 1000 per kg
Pencil	Sh. 100 a pencil

a) What is the cheapest item?
b) Find the cost of four books
c) Find the total cost of buying 1 bar of soap and a kg of sugar.

TIME

1. Draw a clock face and show a half past three o'clock.
2. Draw a clock face showing a quarter to six o'clock.
3. Write the time shown on clock faces below
a)

b)

LENGTH AND AREA

1. Change the following metres to centimetres
a) 3 metres
b) 6 metres
2. Find the perimeter of the figures below:
a)

b)

6 cm
3. Find the area of the figures below.
a)

b)

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
5 \mathrm{~cm}
$$

CAPACITY:

1. Add:

2. Subtract: 73 litres

- 44 litres

3. Nambi collected 63 litres of milk from her farm. She sold 55 litres. How much milk did she remain with?
4. Change the following litres to centiliters.
a) 4 litres
b) 9 litres
5. How many one litre cups will fill a 14 litre jerrycan?
6. How many half litre tins will fill a 22 litre bucket?

WEIGHT

1. Add:

Kg	g
4	120
+	3

Subtract: $\quad \mathrm{Kg} \mathrm{g}$
9310

- 4260

3. Which one is heavier?
4. Otim weighs 17 kgs 750 g . okello weighs 20 kgs 900 g . How many more kg has Okello than Otim?

ALGEBRA:

1. Fill in the missing numbers.
a) $\square+3=7$
b) $\square-5=5$
c) $3 \times \square=12$
d) $12 \div \square=6$
2. I had Shs. 20. My mother gave me more and now I have Shs. 46. How much money did my mother give me?
3. Father had some books, he gave me 5 books and remained with 7 books. How many books did he have at first?
4. Auma had some pencils. She shared them equally among 3 pupils and each got 9 pencils. How many pencils had she before?

SIR APOLLO KAGGWA SCHOOLS

TERM I 2009: LESSON NOTES FOR MATHEMATICS P. 4

LESSON 1

TOPIC I: SET CONCEPTS

SUB TOPIC: REVISION OF SETS

CONTENT: Definition

A set is a collection of well defined objects.
An element is an object or a thing which belongs to a set.
(ii) Naming sets

- A set of tomatoes
- A set of bags etc
- A set of counting numbers
- A set of whole numbers
- A set of even numbers
- A set of odd numbers
(iii) Grouping sets i.e.

Counting members in a set Examples

set T has 6 members therefore $n(T)=6$ members
therefore $n(T)=6$ members
set W has 3 members
Therefore $n(W)=3$ members.
(iv) Listing members of a set.

ACTIVITY: Exercise 1a page 1 Nos. 1-8 (MK MTC bk 4 old edition)
Remarks.
LESSON 2: CONTENT: Equivalent and non-equivalent sets.
Equivalent sets are sets with the same number of members which are not exactly the same.
Symbol

Example.

$B=(x, y, z) \quad c=(4,5,6)$
Set B is equivalent to set C
$\mathrm{Or} \mathrm{B} \longleftrightarrow \mathrm{C}$
N.B: Equivalent sets are also called matching sets.

Non - Equivalent sets

These are sets with different number of members that are not exactly the same.

Symbol

Example

$X=(m, n, p) \quad Y=(m, w, y, x)$
Set x and y are non - equivalent sets.
Or $\mathrm{x} \longleftrightarrow \mathrm{y}$
N.B: Non-equivalent sets are also called non - matching sets.

Activity: Exercise 1 (MK New edition) page 6.

Remarks.

LESSON 3 :

TOPIC:
SUB-TOTAL: CONTENT:

SET CONCEPTS

TYPES OF SETS
EQUAL SETS AND EQUIVALENT SETS

(i) Equal sets

Equal sets are sets which have the same number of elements which are exactly the same.
Examples of Equal sets

Symbol for equal set $=$

(ii) Equivalent sets.

Equivalent sets are sets with the same number of members which are not exactly the same.

Examples:

$A=(a, b, c, d) \quad B=(1,2,3,4)$

Set A and B are equivalent sets.
Symbol for equivalent set \longleftrightarrow
(iii) Comparing equal and equivalent sets.

Examples:

If $A=\{a, b, c, d, e\} \quad B=\{b, d, c, a, e\}$
Then, $\operatorname{set} A=B$.

ACTIVITY: Exercise 1G page 8 (MK New Edition)
Remarks:

LESSON 4:

CONTENT: EMPTY SETS

Empty sets are sets which do not have members or a set whose members cannot be found. They are the sets without members. The empty set can also be called a null set or void set.

Symbol.

Examples

Set N is an empty set.
(b) A set of goats with 6 legs each is an empty set.

ACTIVITY: Exercise 1b and 1 C page 2 (Mk New edition)

Remarks.

LESSON 5:

CONTENT: Even and Odd sets.
(i) Even sets.

These are sets whose members can all be paired.

Example:

- Set K has 4 members.

Members of set K have all been paired, therefore it is an even sets.
NB: An empty set is an even set.
(ii) Odd sets:

Odd sets are sets whose members can not all be paired.

Not all members of set M have been paired. Therefore it is an odd set.

ACTIVITY: Exercise 1(d) and 1 (e) page 3 and 5 (New Edition) Remarks:

LESSON 6:

CONTENT: JOINT AND DISJOINT SETS
(i) Joint sets

Joint sets are sets with common embers. They are the sets with atleast one common member.
Joint sets are also inter-secting sets

Examples

$P=(a, b, c, d, e) \quad Q=(a, e, i, o, u)$
Common members $=(a, e)$
Therefore, set P and Q are joint sets.
(ii) Disjoint sets are sets.

Disjoint sets are sets without common members.
Disjoint sets are also called Non - intersecting sets.

Examples;

$D=\{x, y, z, w\} \quad K=\{7,4,5,6\}$
Common members $=$. \qquad
Therefore set D and K are disjoint sets.

ACTIVITY. Exercise 1 page 10 (Mk Old edition)

Oxford Pri. MTC bk 4 page 10-11.

Remarks:

LESSON 7.

SUBTOPIC : Intersection of sets.

CONTENT: Definition

 Intersection of sets is a set with common members.- The symbol for intersection of sets.

Example:

$\mathbf{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\} \quad \mathbf{B}=\{\mathrm{a}, \mathrm{e}, \mathrm{l}, \mathrm{o}, \mathrm{u}\}$
(i) Find $A \cap B$.

$$
A \cap B=\{a, e\}
$$

(ii) How many members are in set $\mathrm{A} \cap \mathrm{B}$?

There are 2 members in set $\mathrm{A} \cap \mathrm{B}$

- Shading the intersection set.
- listing common members from a venn diagram.

Example:

(ii) Find $Q \cap M$

$$
Q \cap M=\{a, d\}
$$

(iii) How many members are in set $Q \cap M$ or $n(Q \cap M)$

There are 2 members in set $\mathrm{Q} \cap \mathrm{M}$
ACTIVITY: Exercise $1(\mathrm{~g})$ and $1(\mathrm{~h})$ page 12 (Old Edition)

Remarks:

LESSON 8:

CONTENT: UNION OF SETS

Union of sets is a collection of all the members in the given sets.
Symbol; \rightarrow U

Examples

If $P=(a, e, l, o, u) \quad Q=(a, b, c, d, e)$
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

What is $\mathrm{P} \cup \mathrm{Q}$?
Answer: $P \cup Q=(a, e, I, o, u, b, c, d)$
N.B: Common members are written once.

Shading the union sets

Examples

NU M is shaded

Listing members of Union set from a venn diagram.

(i) Find $P \cup Q=\{3,4,5,1,7,2,6\}$.
(ii) How many members are in set $P \cup Q$?

7 members.

ACTIVITY: EXERCISE 1 PAGE 14 (MK NEW EDITION)

REMARKS.

LESSON 9:

CONTENT:

(a) Difference of sets.

Difference of sets is a set of members that exists in one set only. i.e. Set A - B means members of set A only.

Example:

If $P=\{r, s, t, v\} \quad Q=\{a, t, m, s\}$
(i) $P-Q=\{r, v\}$
(ii) $Q-P=\{a, m\}$
(b) Shading the difference of sets i.e. $\rightarrow B-D$

\rightarrow D - B

(c) Listing members of difference of sets from the venn diagram.

Example:

Pqwered by: (Toschoog- | www.schoolporto.com | System developed by: lule 0752697211

\mathbf{P}	2	14	9	\mathbf{Q}
	3	5		

(i) $P-Q=\{2,3\}$
(ii) $Q-P=\{9\}$
(iii) How many members are in set P only?

There are 2 members in set P only.
ACTIVITY: If set $R=\{p, q, m, k\}$ and $T=\{m, l, l, k\}$
Find (i) $R-T$
(ii) $T-R$
(iii) R only
(iv) T only

REMARKS:

LESSON 10:

CONTENT: Venn diagrams.
(i) Shading and describing shaded regions.

Examples:

Shade the following:
(a) $\mathrm{A} \cap \mathrm{B}$
(b) $A \cup B$
(c) R - M (R only)

Describing shaded regions.

Examples:

Describe the shaded regions.
(a)

Set K
(b)

Set B only

Set Q

ACTIVITY: Draw and shade these regions.
(a) A but not B
(b) $A \cup B$
(c) Set B
(d) $B-A$

Remarks.

LESSON 11:

CONTENT: putting sets on Venn diagram
Examples: $\quad \operatorname{Set} A=(1,2,3,4,5)$
$B=(0,2,4,6,8)$
Represent the two sets on a venn diagram.

Discuss
List members of
(a) A only $(1,3,5)$
(b) $\mathrm{B}-\mathrm{A}(0,6,8)$
(c) $A \cap b(2,4)$
(d) $\quad A \cup B=(1,3,5,2,4,0,6,8)$
e) $\quad B$ only $=\{0,6,8)$

ACTIVITY

Set $P=\{a, b, c, d, e\}$
$Q=\{a, e, l, o, u\}$
Represent the two sets on the venn diagram below

Use the venn diagram to answer (i) $\mathrm{P} \cap \mathrm{Q}$
(ii) $P \cup Q$
(iii) P only
(iv) set Q
(v) $P-Q$
(vi) $Q-P$
(vii) members of Q but not p.

REMARKS

LESSON 12
 SUB TOPIC Number of members in a set using symbols.

CONTENT Using symbols, the number of members is represented by letter \mathbf{n} that appears outside the given set. ie.
(i) $n(A)$ means number of members in set A.
(ii) $n(A \cap B)$ means number of members in set $A \cap B$, etc.

Example:

(i) Find $\mathrm{n}(\mathrm{M} \cap \mathrm{N})$
$\mathrm{M} \cap \mathrm{N}=\{2,4\}$
$\therefore \mathrm{n}(\mathrm{M} \cap \mathrm{N})=2$ members.
(ii) Find $\mathrm{n}(\mathrm{N})$

$$
\begin{aligned}
& N=\{2,4,6,3,7\} \\
& \therefore \mathrm{n}(\mathrm{~N})=5 \text { members. }
\end{aligned}
$$

(iii) Work out: $n(M \cup N)$

$$
\begin{aligned}
& M \cup N)=\{5,1,2,4,6,3,7\} \\
& \therefore n(M \cup N)=7 \text { members. }
\end{aligned}
$$

(iv) Work out: $\mathrm{n}(\mathrm{M}-\mathrm{N})$

$$
\begin{aligned}
& M-N=\{5,1)\} \\
& \therefore n(M-N)=2 \text { members. }
\end{aligned}
$$

ACTIVITY: 1 . Given the venn diagram.

Find (i) $P \cap Q$
(ii) $n(P \cap Q)$
(iii) $n(P-Q)$
(iv) $n(Q)$
(v) List of members of set P.

REMARKS

LESSON 13

SUB TOPIC SUBSETS

 CONTENT$>$ A subset is a small set got from a big set.
> An empty set is a subsetof any set
$>$ A set is a subset of itself (its called a super set). The suspense is a subset similar to the given set.
> The symbol for subset is
> The symbol for not a subset is $\not \subset$
Listing subsets
Set $A=\{1,2,3\} \quad\left\{\begin{array}{c}\} \\ \\ \\ \\ \{1,2,3\} \\ \\ \\ \\ \\ \\ \\ \\ 21,3\} \\ \end{array}\right.$

REMARKS

LESSON 14

TOPICAL QUESTIONS FOR TOPIC I (SETS)

1. $A=\{a, b, c, d, e, f\}$

Find $n(A)$
2. Use EQUAL, EQUIVALENT OR DISJOINT
a)

Sets A and B are \qquad sets.
b) $\quad X=\{1,2,3,4\}$

$$
Y=\{5,6,7\}
$$

Set x and y are \qquad sets
$M=\{s, p, o, t\}$
$N=\{P, O, t, s\}$
Sets M and N are \qquad sets
3. Name these set symbols.

\qquad

4. $Q=\{a, b, c, d, e\}$
$P=\{a, e, l, o, u\}$
Draw and represent sets Q and P on a venn diagram
a) Find:
i) $\quad Q n P$
ii) $n(Q U P)$
5. Draw that

a) List the elements o in set A
b) List the elements of set B
c) List the elements of $A n B$
d) List the elements in $A \cup B$
e) Find A - B
6. Draw and shade the following regions
i) $A n B$
ii) $X \cup Y$
iii) $P-Q$
7. Write a set of counting numbers less than 10.
8. Give a set of whole numbers less than 10.
9. Write a set of even numbers from 0 to 10
10. Give asset of odd numbers between 4 and 10 .
11. If a $\{P, Q\}$, write all the subsets in set A.
12. If T \{rat, hen\}, give all the subsets in set T .
13. If $M=\{a, b, c\}$, write all the subsets in set M.
14. Give two other names for empty set.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

TOPIC : NUMERATION SYSTEMS AND PLACE VALUES

LESSON 15

CONTENT (lower work)

- Representing numbers on the abacus.

Example 1. Represent 4068 on the abacus below:

Example 2: Show each of the following on the abacus:
a) 1305
b) 5090

Finding place values:

Example

Find the place values of each digit in words

In figures

ACTIVITY

$>$ MK primary Mathematics Book 4 (old edition) Ex 2 b page 20.
> Oxford primary Mathematics Book 4 page 25
REMARKS

LESSON 16

SUBTOPIC: Values of numbers.
CONTENT: Value is the product of a digit and its place values.

Example:

1. Find the value of 7 in the number 4702.

Hundreds
Thousands
Value $=\mathrm{D} \times \mathrm{P} . \mathrm{v}$
$=7 \times$ Hundreds
$=7 \times 100$
$=700$
ACTIVITY: Exercise 2C page 21 (New edition)
REMARKS

LESSON 17

SUB- TOPIC: Expanding numbers using place values.

Example

Expand 3746 using its place values

TH	H	T	O

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$(3 \times 1000)+(7 \times 100)+(4 \times 10)+(6 \times 1)$

ACTIVITY
MK Primary Mathematics Book 4 page 24

Exercise 2f

REMARKS.

LESSON 18

SUB-TOPIC : EXPANDING NUMBERS USING VALUES
Example
Expand 74326 using its values

T / TH	TH	H	T	O
7	4	3	2	6

$70,000+4000+300+20+6$
ACTIVITY
MK Primary mathematics Book 4 Page 24
Exercise $2 f$
LESSON 19:
SUB TOPIC : FIND EXPANDED NUMBER

CONTENT

What number has been expanded to give
a) $(2 \times 10,000)+(3 \times 1000)+(2 \times 10)+(1 \times 1)$
$20,000+3000+20+1$
20000
3000
20
$+$
-1
23021 The number is 23,021
b) $60000+4000+200+8$

60000
4000
200
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
$+$ \qquad 8
64,208 The number is 64,208 .

ACTIVITY

What number has been expanded .
i) $100+20+2$
2) $3000+400+90+2$
3) $(9 \times 10,000)+(6 \times 100)+(3 \times 10)+(3 \times 1)$
4) $(7 \times 1000)+(9 x 100)+(4 \times 1)$
5. $5000+70+8$

REMARKS.
LESSON 20

SUBTOPIC: WRITING FIGURES IN WORDS

CONTENT

EXAMPLE
Write 43265 in words

Thousand	H	T	O
$4 \quad 3$	2	6	5

Forty three thousand, two hundred sixty five

Example

Write 6606 in words

Thousands	H	T	O
6	6	0	6

Six thousand, six hundred six.

ACTIVITY

MK Primary Mathematics (old edition) page 21-22
Exercise 2d
REMARKS

LESSON 21

SUB TOPIC : WRITING WORDS IN FIGURES

CONTENT
Write twelve thousand eight hundred thirty two

ACTIVITY

MK Primary Mathematics (old edition) page 22

EXERCISE 2e

REMARKS.

LESSON 22

SUB TOPIC: DECIMALS (CHANGING FRACTIONS INTO DECIMALS)

CONTENT :	A DECIMAL IS PART OF A WHOLE	WITH A DECIMAL POINT		
EXAMPLE I		EXAMPLE II		
$\underline{1}=0.1$		$\underline{7}$	$=$	0.
10		10		
$=0.1$				0.
$1 0 \longdiv { 1 0 }$				
- 10				
--				--
EXAMPLE III		EXAMPLE IV		
$\underline{9}$	$=0.9$	$\underline{6}$	$=0$	
10		10		
0.9		0.6		
1090		1060		
90				

ACTIVITY

Exercise 2g nos 1 - 12
Mk book 4 page 25
Oxford primary maths bk4 page 28
Progressive primary maths bk 4 page 66-67.

LESSON 23

SUB-TOPIC : WRITING DECIMALS IN WORDS

CONTENT

Writing decimals in words

EXAMPLEI

Write 0.7 in words
a) $0.7=\frac{7}{10}$
$=\quad$ Seven tenths.
b) $\quad 0.7=$ zero pint seven

EXAMPLE II

Write 0.9 in words
a) $0.9=\underline{9}$

10
Nine tenths
b) $\quad 0.9=$ zero point nine.

ACTIVITY

Exercise 2i page 26 Mk new edition

REMARKS

LESSON 24

SUBTOPIC : WRITING DECIMALS IN FIGURES

CONTENT

EXAMPLEI
Write two tenth in figures.

$$
=\begin{array}{cccc}
\frac{2}{10} & \text { or } & 0.2 \quad \text { or } .2
\end{array}
$$

Example II

Write Zero point four in figures

$$
=\quad 0.4
$$

ACTIVITY
Exercise 2h MK Bk 4 page 26
REMARKS
LESSON 25
SUBTOPIC : WHOLE AND DECIMALS
CONTENT : CHANGING MIXED FRACTIONS TO DECIMALS
EXAMPLEI
$2 \frac{1}{10}$

2. 1

Powered by: -iToschool- | www.schoolporto.com | System developed by: Iule 0752697211

EXAMPLE II

$23 \frac{5}{10}$	$=23+0.5$
	$=23$
$\frac{0.5}{23.5}$	

ACTIVITY
Exercise 2j Mk bk 4 page 27.
REMARKS

LESSON 26

SUBTOPIC: PLACE VALUES OF WHOLE AND DECIMALS

CONTENT

EXAMPLE
a) In words

Whole . decimals

\longrightarrow Tens
b) In figures

Wholes decimals

ACTIVITY : EXERCISE 2K MK BK 4 Page 28

REMARKS:

LESSON 27
SUB- TOPIC: VALUES OF WHOLES AND DECIMAL NUMBERS
CONTENT
EXAMPLE I
33.2

Powered by: -iToschool- \| www.schoolporto.com | System developed by: lule 0752697211

$$
\begin{aligned}
& 2 \text { tenths }=2 \times 0.1=0.2 \\
& 3 \text { ones }=3 \times 1=3 \\
& 3 \text { tens }=3 \times 10=30
\end{aligned}
$$

i.e the value of 2 is 0.2 .

ACTIVITY

Exercise $2 l$ page 29
Mk bk 4 new edition

REMARKS

LESSON 28

SUB TOPIC : WRITING WHOLES AND DECIMALS IN WORDS.

CONTENT

EXAMPLE I
Write 7.5 in words
$7.5=7=$ seven
0.5 and five tenths
7.5 seven and five tenths.

Or $7.5=$ seven point five

EXAMPLE II
Write 107.2 in words
107.2 = 100 one hundred

7 seven
0.2 and two tenths
$107.2=$ One hundred seven and two

ACTIVITY: Exercise 2n page 31 (MK New Edition)
REMARKS:

SUBTOPIC : WRITING WHOLES AND DECIMALS IN FIGURES

Content

Example I
Writing in figures
Twenty five and three tenths.

Twenty five	$=25$
And three tenths $=$	$+\frac{0.3}{25.3}$

Powered by: -iToschool- \| www.schoolporto.com | System developed by: lule 0752697211
Example II

Two hundred seventy five and one tenths
Two hundred
$=\quad 200$
Seventy five $=\quad+75$
And one tenth $=\frac{0.1}{275.1}$

ACTIVITY : EXERCISE 2M PAGE 30
MK bk 4 new edition

REMARKS

LESSON : 29

SUB TOPIC : ROMAN NUMERALS (HINDU ARABIC ROMANS)

CONTENT
TABLE A

Hindu Arabic	Roman Numerals
1	I
2	ii
3	iii
4	iv
5	v
6	vi
7	vii
8	viii
9	ix

TABLE B

Hindu Arabic	Roman Numerals
10	X
20	Xx
30	Xxx
40	XI
50	L
60	Lx
70	Lxx
80	Lxxx

90	Xc
100	c

Example

1. Change 36 into Roman numerals
a)

$$
\begin{array}{rlrl}
36 & = & 30+ & 6 \\
& = & x x x+v i \\
& = & x x x v i
\end{array}
$$

b) $14=10+4$
$=\quad \mathrm{X}+\mathrm{IV}$
$=\quad X i v$

ACTIVITY: \quad Exercise 2(0) page 34 Mk bk 4
New edition
REMARKS

LESSON 30

SUBTOPIC : CHANGING ROMAN NUMERALS TO THE HINDU - ARABIC

CONTENT:

EXAMPLE

1. Write XIV in Hindu - Arabic

$$
\begin{aligned}
& \text { XIV }=X+\mathrm{IV} \\
&=10+4 \\
&=\quad 10 \\
&+4 \\
& \hline 14 \\
& \hline
\end{aligned}
$$

2) $X X X I X=X X X+I X$

$$
=30+9
$$

$$
=30
$$

$$
\begin{aligned}
& +\quad 9 \\
& \hline 39
\end{aligned}
$$

ACTIVITY : Exercise 2p page 34 Mk bk 4 new edition.

REMARKS

LESSON 31

SUBTOPIC : WORD PROBLEMS ABOUT ROMAN AND HINDU ARABIC NUMERALS

CONTENT: - Word problems.

EXAMPLES

Namiya recorded her friends age in Hindu - Arabic numerals. Chang their age to Roman numerals.
a) Namweruka

- 11years

$$
11=10+1
$$

b) Apire
c) Babirye

$$
\begin{aligned}
& 13 \text { years } \\
& 13=10+3 \\
& =X+I I I \\
& =\text { XIII }
\end{aligned}
$$

$$
\begin{aligned}
& 12 \text { years } \\
& 12=10+2 \\
& =10 \\
& +\quad 2 \\
& \hline 12
\end{aligned}
$$

ii) After that she recorded the age of her family members in Roman. Change their age to Hindu Arabic numerals.
a) Herself - IX

$$
\begin{aligned}
& =10-1 \\
& =9 \text { years }
\end{aligned}
$$

b) Sister Angela

	XIV
$=$	$10+4$
$=$	14 years

ACTIVITY : Learners do a written exercise copied from the chalk board.

REMARKS.

LESSON 32

SUBTOPIC : Addition of Roman numerals

Examples

i) $1 x+V$	ii) $=X X+V I I$
$=9+5$	$=20+7$
$=14$	$=27$
$=14=10+4$	$=27=20+7$
$=X+I V$	$=\mathrm{XX}+\mathrm{VII}$
$=$ XIV	= XXVIII

Subtraction of Roman numerals

Examples

a) XXXVI -
XXII
$14=10+4$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
$=30+6-20+2$
36-22
14
b) IX -
$=\quad X+I V$
$=\quad$ XIV
$=\quad \mathrm{IV}$
$=9 \quad-\quad 5$
$=4$

ACTIVITY:

1. $X X X I V+X L V$
2. $X V+X X I X$
3. $X C I I+X L$
4. $X X V-V$
5. $X X X I V-X V I$

REMARKS

LESSON 33
TOPICAL QUESTIONS ON NUMERATION SYSTEM AND PLACE VALUE.

1. What is place value of the underlined digits
3062
b) $77 \underline{077}$
c) 10,001
d) $2 \underline{8} 783$
e) 13.2
2. Find the value of the underlined digits
a) $\underline{5} 73$
b) $\mathbf{3} 615$
c) 34807
d) 20.8
3. Write in words
a) 48349
b) $\quad 26.7$
4. Write in words
a) 48349
b) $\quad 26.7$
5. Write the following in figures
a) Twenty three thousand, nine hundred seventy one
b) Two thousand eight
c) Twelve and six tenths
6. Change 3 to a decimal fraction

10
7. Change to Roman numbers
a) 19
b) 46
c) 23
28. Change to Hindu Arabic
a) XLIX
b) XXXI
c) XIV

REMARKS:
LESSON 34

TOPIC : OPERATION ON NUMBERS
SUBTOPIC:

1. Without re-grouping
2. Addition with re-grouping.
3. Word problems.

Other words that call for addition, sum, total
Addition without regrouping (or without carrying), with regrouping or carrying and then word problems:

Examples

(1) $12+4+3$
(2) $20+15+36+8$

(3) | 4 | 6 |
| ---: | ---: |
| +5 | 0 |

(4) | 5 | 6 | 9 |
| ---: | ---: | ---: |
| + | 2 | 2 |

(5) Add

4	3	9	4	6
+	4	8	9	4
488	4	0		

(6) A boy counted 2689 cars on Monday and 4547 cars on Tuesday. How many cars did he count in the two days?
(7) Find the sum of 14 and 6.

1	4
+	6
2	0

(8) Work out the total of 128 and 232
$\begin{array}{r}128 \\ +2302 \\ \hline 3600 \\ \hline\end{array}$

Solution.

4	5	4	7 cars
$+\quad 2$	6	8	9
7	2	3	6

ACTIVITY: Exercise 3a, 3b and 3c page 38-39 (MK old Edition).

LESSON : 35

SUBTOPIC : SUBTRACTION

1. Subtraction with out re-grouping.
2. Subtraction with re-grouping.
3. Word problems.

Other words that call for subtraction, difference, remainder.
Subtraction without regrouping (borrowing), with regrouping and then word problems.

Example:

(i) $9-4=5$
$8-2-3=(8-2)-3$
$6-3=3$
(iii) subtraction 7 from 10
10
$\begin{array}{r}-\quad 7 \\ -3 \\ \hline\end{array}$
(iv) 566

- 423
$1 \quad 43$
(v) 764
- 428
336
(vi) Mugumu had 2570/=. He bought a book for 343/=. What was his balance?

Powered by:-iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Powered by: -iToschool- | www.schoolporto.com | System developed by: lula 0752697211

Solution

2	5	7	$0 /=$
-	3	4	$3 /=$
2	2	2	$7 /=$
$==================$			

(vii) Work out the difference between 9 and 4

$$
\begin{array}{r}
9 \\
-\quad 4 \\
\hline 5 \\
\hline
\end{array}
$$

ACTIVITY : EXERCISE 3 f page 45 (MK New Edition)

LESSON 36

SUBTOPIC: Multiplication
CONTENT: Multiplying by multiples of 10.
Example:

1. $1 \times 10=$

2. $3 \times 20=$

$20+20=60$
3. (i) 10
(ii) 20
(iii) 20

\qquad | $\times 2$ |
| :--- |
| 40 |

$x \quad 3$
60 \qquad
5. (i) 42

$x 1 \quad 0$
420

(ii) 47
xt 0
470

LESSON 37

SUB TOPIC : MULTIPLICATION
Other words that calls for multiplication, product, of times.
CONTENT: MULTIPLYING BY ONE DIGIT

Examples

(i) $5 \times 2=10$
$00+00+00+$
$00+00=10$
(ii) $3 \times 4=12$
$=12$

(iii) | 1 | 6 |
| :--- | :--- |
| | 2 |

(iv)

(v)

362
$\times \quad 3$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$3 \quad 2$

115
15
1018
(v) $\begin{array}{lllll}4 & 3 & 4 & 6\end{array}$

$\begin{array}{llll}1 & 3, & 0 & 3\end{array}$
(vi) A worker is paid $6,960 /=$ a day. How much will the worker get if he works for 7 days.

Solution

1 day he gets 6,960/=
7 days he gets
6960

$\mathrm{X} \quad 7$

48,720

\therefore He gets $48,720 /=$ in 7 days.
(vii) Find the product of 6 and 4.

ACTIVITY : Exercise 3 g Nos $1-3$ page 46 and 3 h $1-5$ page 47 (MK New Edition)
LESSON 38

SUB TOPIC : MULTIPLICATION BY TWO DIGIT FIGURES

CONTENT : example

2	4	
$\times 1$	1	
	2	4
+2	4	0
2	6	4

2. Peter picks 13 mangoes everyday. How many mangoes will he pick in a fortnight?

Solution
Fortnight $=14$ days
1 day he picks 13 mangoes
14 days he picks 13 mangoes

$X \quad$| 14 |
| ---: |
| 52 |

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
+130
$$

$$
182 \text { mangoes }
$$

ACTIVITY : EXERCISE 3 K page 51 (MK New Edition)
REMARKS

LESSON 39
SUB TOPIC : MULTIPLICATION AS REPEATED ADDITION

CONTENT

Example

a) $4 \times 2=2+2+2+2=8$
b) $6 \times 3=3+3+3+3+3+3=18$

ACTIVITY

Use repeated addition to multiply
a) 3×2
b) 6×4
c) 4×3
d) 5×3
e) 8×2

Complete
a) $2+2+2+2=$ \qquad x \qquad
b) $4+4+4=$ \qquad x \qquad
c) $3+3+3+3+3$ \qquad x \qquad
d) $8+8+8=$ \qquad x
e) $3+3+3=$ \qquad
\qquad

REMARKS

LESSON 40

SUB TOPIC : DIVISION

CONTENT : DIVISION AS REPEATED SUBTRACTION

Example

1. $12 \div 3$
$12-3=9$
$9-3=6$
$6-3=3$
$3-3=0$
count the number of times you subtract 3 division from the dividend until you get " \circ " is the answer

$$
\therefore 12 \div 3=4 \text { times }
$$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
ACTIVITY : EXERCISE 31 page 53 (MK new edition)

LESSON 41

SUB TOPIC : DIVISION WITH OUT REMAINDER

CONTENT

Example (a) $8 \div 4=2$
(b) $12 \div 3=4$

(e) 4 | 1201 |
| :---: |
| 804 |

1×4	-4
2×4	8
0×4	$-\quad 8$
	0
	0
	0
	4
	4
	$-\quad 4$

(f)

0404
$3 \longdiv { 1 2 1 2 }$
$0 \times 3=\left\|\frac{-0}{1} \frac{1}{2}\right\|$
$4 \times 3=\underline{12}$
\cdots
$0 \times 3=$

ACTIVITY : (a) EXERCISE 3m page 53 (Mk new edition)
(i) $6 \div 2$
(iv) $96 \div 3$
(viii) 2424 by 4
(ii) $10 \div 5$
(v) $602 \div 2$
(ix) 219 by
(iii) $18 \div 9$
(vi) $966 \div 3$
(iv) $24 \div 2$
(vii) 1515 by
b) Divide
c) Share 48 mangoes among 4 girls
d) Share 106 sweets between 2 boys

LESSON 42

SUBTOPIC : DIVISION WITH REMAINDERS

CONTENT : Division with remainders but putting a zero to keep a place
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Example I
Division

ACTIVITY

Divide the following
(v) 625 by 3 .
(vi) 6247 by 2 .
(vii) 999 by 4 .

LESSON 43

SUB TOPIC : DIVISION BY 10S

CONTENT: Division by 10 s
Example I
$650 \div 10$
$=\underline{650}$
10
$=65$
ACTIVITY
EXERCISE 3 (0) NUMBERS 1 - 12
MK BK PAGE 54.
REMARKS
SUBTOPIC: AVERAGE
CONTENT:
Example: Work out the average of 3,0 and 6

$$
\text { Average }=\frac{\text { sum of items }}{\text { No. of items }}=\frac{3+0+6}{3}=\frac{9}{3}=3
$$

Activity:

1) Find the average of 2,3 and 1
2) Work out the average of 4 and 6
3) Find the average of $2,5,5,1$ and 7
4) Work out the average of 9,0 and 6 .
5) Find the average of the first three even number.

LESSON : 44

SUB-TOPIC: WORD PROBLEMS

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

CONTENT:

Example: Share 246 books among 6 pupils. How many books does each pupil get?

$$
\begin{aligned}
& \begin{array}{r}
6 \\
0 \times 6=\begin{array}{c}
041 \\
\frac{24}{24}
\end{array} \\
\hline 4
\end{array} \\
& 4 \times 6=-24 \\
& 1 \times 6= \\
& \text { - }=41
\end{aligned}
$$

\therefore Each pupil will get 41 books
2. There are 120 oranges in 2 bags. How many oranges are in each bag

Divide

$$
\begin{aligned}
& 2 \begin{array}{|c|}
\hline 160 \\
120
\end{array} \\
& 0 \times 2=-\underline{0} \\
& 12 \\
& 6 \times 2=\underline{1 \quad 2} \\
& 0 \times 2=\quad 0=60
\end{aligned}
$$

\therefore Each bag contains 60 oranges.

ACTIVITY: Exercise 3p page 55 MK Bk4 new edition.
REMARKS

LESSON 45

TOPICAL QUESTIONS (OPERATION ON NUMBERS)
1(a) Add: $3+7$
(b) $2+6+8$
(c) 7-3
(d) 9-3-2
2. Add: $1403+549$
3. Find the difference between 947 and 1024
4. Work out:
a) 6×3
b) $4 \times 3 \times 2$
c) $\begin{array}{r}6 \\ \times \quad 2 \\ \hline\end{array}$

d) | 3 | 4 |
| ---: | ---: |
| x | 2 |

e) $\begin{array}{r}732 \\ x \quad 3 \\ \hline\end{array}$

f) | 1 | 0 |
| :--- | :--- |
| $\times \quad 2$ | |

g) | 3 | 14 |
| ---: | ---: |
| x | 5 |

h) $\begin{array}{r}12 \\ \times \quad 1 \quad 3 \\ \hline\end{array}$

\qquad
\qquad

1. Divide:

Powered by: -iToschool- | www.schoolporto.com | System developed by: Iule 0752697211
a) $8 \div 2$
b) $39 \div 3$
d) $2 \longdiv { 2 6 }$
e) $3 \longdiv { 1 6 2 }$
2. Share 246 books among 6 pupils.
3. The cost of 1 pen is $250 /=$. Find the cost of 4 similar pens.
4. Subtract 99 from 108
5. Kapere planted 314 trees on Monday and 678 more on Tuesday. How many trees did he plant altogether.

LESSON 46

TOPIC: TYPES OF NUMBERS

CONTENT : TYPES OF NUMBERS

Definitions:

- Counting numbers: They are numbers which we use to count.

Examples of counting numbers include $1,2,3,4,5,6,7,8, \ldots$.

- Whole numbers: They are number which begin with zero e.g. $0,1,2,3,4,5$
- Even numbers: They are numbers when divided by 2 leave no remainder e.g. $0,2,4,6,8,10,12 \ldots$.
- Odd numbers: They are numbers when divided by 2 leave remainder 1 e.g 1, 3, $5,7,9,11,13$ \qquad

ACTIVITY
Exercise 40, 4b, 4c and 4d pages 58-60 New MK
REMARKS.
LESSON 47
SUBTOPIC: Number Sequence

CONTENT : NUMBER SEQUENCE BY ADDING

Examples
i) By adding one:

ii) By adding twos

iii) By adding one or two

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

iv) By adding counting numbers.

ACTIVITY

Find the missing numbers in the following
i) $1,3,5,7,9$, \qquad
ii) $5,9,12,14$, \qquad
iii) $3,6,9,12,15$, \qquad
iv) $1,3,7,13$, \qquad
v) $5,10,15,20,25$, \qquad
vi) $1,2,4,7,11,16$, \qquad
vii) $8,10,13,15$, \qquad
REMARKS

LESSON 48

SUBTOPIC : NUMBER SEQUENCES

CONTENT : Number sequence by subtracting

Examples

a)

b) $20,18,15$,

c)

ACTIVITY

Find the missing numbers in the following
I) $9,7,5$, \qquad
II) $18,16,12$, \qquad 6, 4
III) $16,13,10,7$,
IV) 22, 18, 16, 10,

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

REMARKS

LESSON 49

TOPIC : NUMBER PATTERNS AND SEQUENCE

SUB TOPIC: Multiples

A multiple is a product got by multiplying or counting number by the same number.

Example:

List the multiples of

$1 \times 4=4$	$4 \times 4=16$
$2 \times 4=8$	$5 \times 4=20$
$3 \times 4=12$	$6 \times 4=24$

$\{4,8,12,16,20,24, \ldots .$.$\} are multiples of 4$
ACTIVITY Exercise 4e page 60 MK bk4 (old edition)
REMARKS.

LESSON: 50

SUB TOPIC : COMMON MULTIPLES AND L.C.M

CONTENT

Examples

1. Find the first common multiples of 2 and 4
2. $M_{2}=\{2,4,6,8,10,12,14,16,18, \ldots\}$
3. $\mathrm{M}_{4}=\{4,8,12,16,20,24$. \qquad
Common multiples $=\{4,8,12\}$
\therefore L.C.M $=4$
4. Find the L.C.M of 4 and 5
$M_{4}=\{4,8,12,16,20,24,28\}$
$M_{5}=\{5,10,15,20,25,30, \ldots .$.
Common multiples $=\{20\}^{\prime}$
. L.C.M is 20

ACTIVITY : find the L.C.M of
a) Find the common multiples of 4 and 6 less than 30 .
b)
i) 3 and 4
ii) 4 and 6
iii) 3 and 5
iv) 4 and 8

LESSON 51

SUBTOPIC: Multiplying by 10, 100, 1000, 10000
CONTENT: This case, we simply place the number of zeros to the number.
Example
$6 \times 10=60$
$7 \times 100=700$
$8 \times 1000=8000$
$38 \times 100=3800$

ACTIVITY Exercise 4n Mk Primary mathematics page 69
REMARKS.

LESSON 52

SUBTOPIC : MULTIPLYING BY MULTIPLES OF 10

CONTENT
Example I
What is 7×30
$7 \times 30=$?
$30=3 \times 10$
So $7 \times 30=7 \times 3 \times 10$
$=21 \times 10$
$=210$.

Example II
What is 50×30
$50 \times 30=5 \times 10 \times 3 \times 10$
$=5 \times 3 \times 10 \times 10$
$=15 \times 100$ $=1500$

ACTIVITY
Exercise 4(0) page 70 MK Primary maths bk 4 page 70.

REMARKS

LESSON 53

SUBTOPIC : Dividing by multiples of 10

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

CONTENT

We divide by cancelling

Example : Divide 6000 by 30
$\frac{6000}{30}=200$

Example ; Share 2100 mangoes among 70 children $2100 \div 70$

ACTIVITIES

Exercise 4q page 71 Mk primary mathematics Book 4 page 71 .

REMARKS.

LESSON : 54

SUB TOPIC : Listing factors.

CONTENT

Factors are given pairs of numbers you multiply together to get a multiple/product. It is also a number that divides exactly into another number.

Example I

1. Which two numbers do we multiply to get 12 ?
$\mathrm{F}_{12}=1 \times 12=12$
$2 \times 6=12$
$3 \times 4=12$

$$
F_{s}=1,2,3,4,6,12
$$

2. List down all the factors of 16
$\mathrm{F}_{16}=1 \times 6=16$
$2 \times 8=16$
$4 \times 4=16$
$1,2,4,8,16$
$F_{16}=1,2,4,8,16$
3. How many factors has 6
$\mathrm{F}_{6}=1 \times 6$
$=2 \times 3$
$F_{6}=1,2,3,6$
$\therefore 6$ has 4 factors
4. Write the number of factors 18 has.

$$
\begin{aligned}
F_{18}=1 & \times 18 \\
& =2 \times 9 \\
& =3 \times 6 \\
& =1,2,3,5,9,18
\end{aligned}
$$

$\therefore 18$ has 6 factors
ACTIVITY : Exercise 4s page 73 Mk Bk4 and 4t (new edition).

LESSON 55

SUBTOPIC : COMMON FACTORS AND G.C.F/H.C.F

CONTENT: COMMON FACTORS

Examples.

a) list down common factors of 4 and 6

F4 1×4
2×2
$\mathrm{F} 4=\{1,2,4\}$
Common factors $=\{1,2\}$
b) Find the Greatest Common Factors of 6 and 8
F6 $\quad 1 \times 6$
2×3
F6= $\{1,2,3,6\}$
Common factors $=\{1,2$,
G.C.F of 6 and 8 is 2

ACTIVITY:

List down common factors of

- 8 and 10
- 20 and 10
- 9 and 15

2. Find the G.C.F of

- 15 and 20
- 4 and 8
- 16 and 12

REMARKS

LESSON 56

SUB-TOPIC :Divisibility tests for 2, 5 and 10
CONTENT : DIVISIBILITY TEST FOR 2
A number is divided by 2 if its last digit is an even number i.e $0,2,4,6,8$
Powered by: -iToschool- | www.schoolporto.com | System developed by: Iule 0752697211

Divisibility test for 5

A number is divisible by 5 if the last digit is either 0 or 5 for example 2065 and so on.

Divisibility test for 10

A number is divisible by 10 if its last digit is 0 for example 30, 70, 800 and so on.

ACTIVITY

Selected numbers from Exercise 4t, 4u and 4v Mk Primary Mathematics (old edition) page 72-73

REMARKS.

LESSON 57

SUB-TOPIC : MAGIC SQUARES

CONTENT : Procedure: First find the sum of three given digits arranged in columns or rows or diagonals.
In this case, the number are in the diagonal 7, 4 and 1.

Find a
$a+7+5=12$
$a+12-12=12-12$
$\mathrm{a}=0$
$a=0$

Find C
$C+5+1=12$
$C+6-6=12-6$
C= 6

Find b

$$
\begin{array}{cc}
b+7+3=12 & \\
b+10-10=12-10 \\
b= & =2
\end{array}
$$

Find d

$$
\begin{aligned}
& d+3+1=12 \\
& d+4-4=12-4 \\
& d=8
\end{aligned}
$$

. . $a=0$
b = 2
$c=6$
$d=8$

ACTIVITY

Fill in the missing numbers

7	a	5
2	4	C
b	8	8

$a=$ \qquad

$$
b=
$$

\qquad

$$
c=.
$$

\qquad

Powered by: -iToschool- | www.schoolporto.com | System developed by: Iule 0752697211

2	9	a
7	b	3
6	c	d
a	8	3
6	b	2
5	c	7

$$
\begin{gathered}
a= \\
b= \\
c= \\
a= \\
b= \\
c= \\
\end{gathered}
$$

8	1	6
a	s	b
4	c	d

$$
\begin{aligned}
& a= \\
& b= \\
& c=
\end{aligned}
$$

LESSON 58

TOPICAL QUESTIONS ON NUMBERS FACTS AND SEQUENCES.

1. List down the first 4 counting numbers
2. Find the sum of the first 3 even numbers.
3. Complete the following
a) $1,3,5,7,9$, \qquad
b) $40,38,36,34$, \qquad
4. List down the first 7 multiples of 5 .
5. Find the first three common multiples of 2 and 3
6. Find the L.C.M of 4 and 6 .
7. Find the first three common factors of 12 and 18
8. Which of the following are divisible by 2 ? $5,4,8,11,430,721$
9. Which of the following is divisible by 5 ? $54,5,15,72,904,800$?
10. List down all factors of
a) 24
b) 15
11. Find the H.C.F of
a) 4 and 8
b) 3 and 6
12. Find the missing numbers

8	1	6
d	5	c
4	e	f

$$
c=
$$

$$
d=
$$

\qquad
e=
\qquad

LESSON 60.

TOPIC : FRACTIONS

SUBTOPIC : REVISION OF P. 3 WORK

CONTENT : Definition
A fraction is part of a whole.
Naming fractions and writing in words.
Shade

Shade $1 / 3$ of

$1 / 3 \times 6=1 \times 2=2$
Types of fractions:- Proper / Simple / Common fractions.

- Improper fractions.
- Mixed fractions

ACTIVITY : EXERCISE 8q page 95-96 (MK bk 3)

LESSON 61

Subtopic : Equivalent fractions.
Content : Finding equivalent fractions
We can use the knowledge of multiples: We can find equivalent fractions by multiplying numerators and denominators by the same number.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
Example : find equivalent fractions for $2 / 3$
$2 / 3=\frac{2 \times 2}{3 \times 2}=\underline{4}$,
$\frac{2 \times 3}{3 \times 3}=\frac{6}{9}$,
$\frac{2}{3}=\frac{2 \times 4}{3 \times 4}=\frac{8}{12} \ldots \ldots .$.
$\therefore 2 / 3=\left\{\underset{6}{4}, \underline{6}, \underline{6}, \underline{12}, \frac{10}{15}\right.$ \qquad \}.

ACTIVITY

(i) List the first 5 equivalent fractions for
a) $1 / 3$
b) $2 / 5$
c) $1 / 2$
d) $1 / 4$
$4 / 7$
(ii) Find the next equivalent fraction for:
a) $1 / 4$, b) $2 / 7$,
c) $3 / 4$

REMARKS

LESSON 62

TOPIC : FRACTIONS

SUBTOPIC : EQUIVALENT FRACTIONS
CONTENT : FINDING MISSING NUMERATORS AND DENOMINATORS

Examples
i) $\underline{1}=$

$$
6 \div 2=3
$$

$$
\underline{1 \times 3}=\underline{3}
$$

$$
\overline{2 \times 3} \quad \overline{6}
$$

$20 \div 5=4$
$\underline{3 \times 4}=\underline{12}$

$12 \div 4=3$
$\frac{4}{\square} \times \underline{3}=\frac{12}{\times 3}$
$5 \times 4 \quad 20$

$x \square 15(5 \times 3=15)$

v)

iii) $\frac{3}{5}=\frac{y}{20}$

$$
205=4
$$

$$
3 \times 4=12
$$

$5 \times 4 \quad 20$

$$
\therefore \quad=2
$$

\qquad

ACTIVITY
Exercise 5b Mk bkl 4 pages 77.
REMARKS

LESSON 63

Subtopic : Reducing fractions

Content:

Example
a. Reduce $\underline{6}$ to its lowest term

$$
\frac{6}{12}=\frac{12}{\frac{6 \div 2}{12 \div 2}=} \frac{3 \div 3}{6 \div 3}=\frac{1}{2}
$$

When there is no whole number which can exactly divide both the numerator and denominator, then the fraction is in its lowest term.
b) Write $\underline{4}$ in its lowest terms

8

$$
\underline{4}=F_{4}=\{1,2,4\}
$$

Powered by: -iToschool- | www.schoolporto.com | System developed by: Iule 0752697211
8

$$
\begin{aligned}
& \mathrm{F}_{8}=\{1,2,4,8\} \\
& \text { H.C.F }=4 \\
& \frac{4}{8} \div \frac{4}{4}=1 / 2
\end{aligned}
$$

ACTIVITY : Exercise 5d page 84 Mk bk 4 (new edition)
REMARKS
LESSON 64
SUBTOPIC: Comparing fractions without using a number line.
CONTENT : COMPARING FRACTIONS WITHOUT USING A NUMBER LINE.

Example
A. Which is greater?
i)
$1 / 4$
or $1 / 2$
ii) $1 / 2$ or $2 / 3$
$1 / 4=2 / 8$
$1 / 2=2 / 4=3 / 6=4 / 8$
$1 / 2=2 / 4=3 / 6=6 / 9$

$$
2 / 3=4 / 6=6 / 9
$$

$\therefore \quad 1 / 2$ is greater

$2 / 3$ is greater
b) Arrange starting with the largest fraction
i)
$1 / 2,2 / 3 \quad, 1 / 6$
ii) $1 / 3, \quad 1 / 2 \quad 1 / 5$
$1 / 2=2 / 4=3 / 6=4 / 8,=5 / 10 \ldots \ldots \ldots$
$1 / 3=2 / 6=3 / 9=4 / 12=5 / 15=6 / 18=7 / 21$
$2 / 3=4 / 6=6 / 9$
$2 / 3=4 / 6=6 / 9$
$8 / 24=9 / 27=10 / 30$
$1 / 6=2 / 12$

$$
\begin{aligned}
& 1 / 2=2 / 4=3 / 6=4 / 8=5 / 10=6 / 12=8 / 14=15 / 30 \\
& 10 / 20=11 / 22=12 / 24=13 / 26=14 / 28=15 / 30
\end{aligned}
$$

$$
{ }^{2} / 3,3 / 6^{1 / 6}
$$

$$
\begin{aligned}
& 1 / 5=2 / 10=3 / 15=4 / 20=5 / 25 \\
& 1 / 2,1 / 31 / 5
\end{aligned}
$$

ACTIVITY : Exercise 5e nos. 1 - 15 Mk bk 4 page 81
REMARKS.

LESSON 65

Subtopic: Addition of fractions with different denominators

Content:
Rev: Workout: (a) $1 / 3+1 / 3=2 / 3$
b) Add: $\begin{aligned} \underline{2}+\frac{5}{7}=\frac{7}{7} & \\ & =1\end{aligned}$

Examples

Method 1: Using equivalent fractions.
Add: $1 / 2+1 / 3$

Rename $1 / 2$ and $1 / 3$ so that their denominators are the same.

$$
\begin{aligned}
& \text { then } 1 / 2=\{2 / 4,3 / 6,4 / 8 \ldots \ldots .\} \\
& 1 / 3=\{2 / 6,3 / 9,4 / 12 \ldots \ldots\} \\
& \begin{aligned}
& \therefore 1 / 2+1 / 3=3 / 6+2 / 6 \\
&=\underline{3+2} \\
& 6
\end{aligned} \\
& =5 / 6
\end{aligned}
$$

Method 2: Using the L.C.M:
Work out: $1 / 2+1 / 3$
Find the L.C.M of 2 and 3 to be the common denominator

$$
\begin{aligned}
& \mathrm{M}_{2}=\{2,4,6,8 \ldots \ldots\} \quad \mathrm{M}_{3}=\{3,6,9 \ldots \ldots . . .\} \\
& \text { Then } \underline{x 1}+\underline{\mathrm{x} 1}=\frac{(3 \times 1)+(2 \times 1)}{6} \div \frac{3+2}{6} \\
& \\
& =\frac{5}{6}
\end{aligned}
$$

1. I gave $2 / 5$ of my land to John at first and added him $1 / 5$ what fraction did he have altogether?
2. I ran $2 / 3$ of my journey and walked $2 / 5$. What was the total fraction of the journey did I cover?
I ran $=2 / 5=2 / 3+2 / 5=\frac{2 / 3+15+2 / 5 \times 15}{15}$
I walked - $2 / 5=\frac{2 \times 5+2 \times 3}{15}=\frac{10+6}{15}$

ACTIVITY: Exercise 5 g and 5 h
Page 87-88 Mk bk4 (New edition)

REMARKS

LESSON 66

SUBTOPIC : Subtraction of fractions with different denominators.
CONTENT: \quad Revision examples: (i) $\frac{2}{3}-\frac{1}{3} \quad$ (ii) $\frac{4}{5}-\frac{1}{5} \quad$ (ii) $\frac{7}{10}-\frac{2}{10}$

Revision:
Examples:
a) $3 / 4-2 / 3$

Get equivalent fractions of each fraction.
$\frac{9-8}{12-12}=\frac{9-8}{12}=\underline{1}$
b) Akello had $5 / 6$ of a cake. She gave away $1 / 4$ to her best friend. What fraction remained?

Solution

$\frac{5}{6}-\frac{1}{4}$
Get equivalent fractions for each in order of question.
$\frac{5}{6} \quad=\quad \frac{5}{6} \quad \frac{10}{12} \quad \frac{15}{18} \quad \frac{20}{24} \quad \frac{25}{30} \quad \frac{30}{36} \ldots \ldots$.

$$
\begin{array}{lllllll}
1 / 4 & =\frac{1}{4} & \underline{2} & \frac{3}{8} & \frac{4}{12} & \frac{4}{16} & \frac{5}{20}
\end{array} \frac{6}{24} \frac{7}{28}
$$

Use the L.C.D fraction

$$
\frac{10-3}{12-12}=\frac{10-3}{12}=\frac{7}{12}
$$

ACTIVITY : Exercise 5 o page 95 (Mk new edition)
Remarks.

LESSON 67

Sub topic: Changing mixed numbers to improper fractions

Content:

An improper fraction is a fraction whose denominator is smaller than the numerator e.g $7 / 2$

A mixed number is a number with a whole number and a common fraction e.g $6 / 5$ When changing a mixed number into an improper fraction we use.

Denominator x whole number + Numerator or
Denominator
$(\underline{D} \times)+N$
D

Examples:

Change $62 / 5$ into an improper fraction

$$
\begin{array}{ll}
62 / 5=\frac{D \times W+N}{D} & D=5 \\
W=6
\end{array}
$$

$$
\frac{(5 \times 6)+2}{5} \quad N=2
$$

$=\quad \underline{32}$ 5
ACTIVITY
Exercise 5 i Mk primary Mathematics (old edition) page 85.

LESSON 68

Sub topic : Changing improper fractions to mixed numbers

Content

Example
Express $\quad 8 / 3$ as a mixed number
$8 \div 3$
2 rem 2

$$
\begin{gathered}
3 8 \longdiv { 8 } \\
3 \times 2=\frac{6}{2} \\
8 / 3= \\
22 / 3 \text { Ans. }
\end{gathered}
$$

Example

Change $\underline{17}$ into a mixed number 5

ACTIVITY

Exercise 5K page 92 Mk primary Mathematics Book 4 (new edition)

LESSON 69

SUBTOPIC: Addition of mixed fractions
CONTENT: Addition of mixed fractions with same denominators.
Examples

$$
\begin{array}{rlrl}
\text { 1. Add: } & & 11^{1 / 3+4^{1 / 3}} \\
= & & (1+4)+(1 / 3+1 / 3) \\
& = & 5+\frac{(1+1)}{3} \\
& = & 5+2 / 3 \\
= & 52 / 3
\end{array}
$$

ii) $\quad 2^{1 / 7}+3^{5 / 7}$

$$
\begin{aligned}
& =(2+3)+(1 / 7+5 / 7) \\
& =5+\frac{(1+5)}{7} \\
& =5 \quad+6 / 7 \\
& =56 / 7
\end{aligned}
$$

lii) $31 / 4+23 / 4$

$$
\begin{aligned}
& (3+2)+(1 / 4+3 / 4) \\
= & 5+\frac{(1+3)}{4} \\
= & 5+\underline{4}
\end{aligned}
$$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
\begin{gathered}
4 \\
=5+1 \\
=6
\end{gathered}
$$

ACTIVITY

Exercise 5K page 86 Mk bk 4 page 86
Exercise 8 page 63 oxford primary maths bk 463.

LESSON 70

Sub topic: Addition of mixed fractions.
Content : Addition of mixed fractions with different denominators.
Examples:

$$
\text { Add: } \quad \begin{aligned}
& 21 / 2+31 / 4 \\
= & (2+3)+(1 / 2+1 / 4) \\
= & 5 \quad+\frac{(2 \times 1)+(1 \times 1)}{4} \\
= & 5+\frac{3+1}{4} \\
= & 5+3 / 4 \\
& =53 / 4
\end{aligned}
$$

Activity:

1. $2^{1 / 3}+1^{1 / 5}=$
2. $41 / 6+3 / 4=$
3. $3^{2} / 5+1^{1 / 3}=$
4. $5^{1 / 7}+3^{1 / 3}=$

LESSON 71

Sub topic: Finding the remaining fraction.

Content :

Examples:

1. Maishara ate $4 / 5$ of an orange. What fraction remained?

$$
\begin{aligned}
& 1-4 / 5 \\
= & 5 / 5-4 / 5 \\
= & \frac{5-4}{5} \\
= & 1 / 5 \\
1 / 5 & \text { remained. }
\end{aligned}
$$

2. Mariam used $3 / 20$ of the water in the Jerrycan for bathing. What fraction was left?

$$
\begin{aligned}
& 1-3 / 20 \\
= & 20 / 20-3 / 20 \\
= & \frac{20-3}{20} \\
= & \frac{17}{20}
\end{aligned}
$$

Activity:

1. Juma painted $7 / 10$ of his house on Monday, what fraction of his house has not been painted?
2. $1 / 3$ of the people in a family are adults. What is the fraction for children?

LESSON 72

Sub topic: Subtraction of mixed numbers
Content: Subtraction of mixed fractions with the same denominators.

Example

1. Subtract $43 / 5-2 \frac{1 / 5}{5}$

$$
\begin{aligned}
& =\quad(4-2)+3 / 5-1 / 5) \\
& =2+\underline{(3-1)} \\
& =2+2 / 5 \\
& =22 / 5
\end{aligned}
$$

1. Rebecca had a piece of material $102 / 5$ metres long. She made a gomesi for Esther, her sister with $7 \frac{1}{5}$ metres. Ho w long was the cloth she was left with?
Soln : she had $10^{2 / 5}$ metres
Used $\quad 7 \frac{1}{5}$ metres
$=\quad 10^{2} / 5-71 / 5$
$=(10-7)+(2 / 5-1 / 5)$
$=3+(\underline{2-1})$
5
$=3+1 / 5$
$=\quad 31 / 5$
Activity : Exercise 51 page 86 Mk Bk 4 (old edition)

LESSON 73

Sub topic: Subtraction of mixed fractions.
Content : Addition of mixed fractions with different denominators

Example:

$$
\begin{aligned}
84 / 5-31 / 2 & =(8-3)+(4 / 5-1 / 2) \\
& =5+\frac{(2 \times 4)-(5 \times 1)}{10} \\
& =5+\frac{8-5}{10} \\
& =5+3 / 10 \\
& =53 / 10 .
\end{aligned}
$$

Activity:
Subtract:
(1) $73 / 4-4^{2 / 3}$
(2) $4 \frac{5}{6}-1 \frac{1}{2}$
(3) $11 / 4-1 \frac{1}{5}$
(4) $21 / 2-1 / 4$

LESSON 74

Sub topic: Fraction of a group
Content:

Examples:
(a) What is $3 / 4$ of 12 goats?
$3 / 4$ of 12
$=3 / 4 \times 12$
$=3 \times 3$
$=9$ goats.
b) What is $1 / 2$ of 24 ?
$1 / 2$ of 24
$=1 / 2 \times 24$
$=1 \times 12$
$=12$
Activity: Exercise 5q Page 97 (MK New Edition)

LESSON 75

Sub topic: Application of fractions.
Content:
Examples:
There are 14 children in a taxi: $2 / 7$ of them are boys.
a) How many boys are in the taxi?

$$
\begin{aligned}
& 2 / 7 \text { of } 14 \\
= & 2 / 7 \times 14 \\
= & 2 \times 2 \\
= & 4 \text { boys }
\end{aligned}
$$

b) How many girls are in the taxi?

14

14
$-\quad 4$

10 girls
c) What is the fraction of girls in the taxi?

$$
\begin{aligned}
& 1-2 / 7 \\
= & 7 / 7-2 / 7 \\
= & 7-2 \\
= & 5 / 7
\end{aligned}
$$

Activity:

1. There are 15 pupils in $\mathrm{P} .42 / 5$ of them area girls. The rest are boys.
a) How many girls are in the class?
b) How many boys are the class?
c) What is the fraction of boys in the class?
2. There are 10 people in play. $3 / 5$ of them are men. The rest are women.
a) What is the fraction of women in the play?
b) How many women are in the play?
c) How many men are in the play?

Remarks:

Example

Find the reciprocal of
a) $5 / 7 \frac{5}{7} \times \frac{7}{5}=\frac{35}{35}=1$
\therefore Reciprocal $=\frac{7}{5}$
b) $3 / 2 \quad \frac{3}{2} \times \frac{2}{3}=\frac{6}{6}=1$
\therefore Reciprocal of $\underline{\underline{3}}=1$ 2

The reciprocal of $5 / 7$ is $7 / 5$. The reciprocal of $3 / 2$ is $2 / 3$

ACTIVITY

Find the reciprocal of:
a) $3 / 7$
b) $5 / 11$
c) $12 / 8$
d) $8 / 3$

LESSON : 76

Subtopic: Multiplication of fractions.
Content : When multiplying fractions, we use
Numerator x Numerator in
short it is N x N
Denominator x Denominator
D×D

Examples:

1. $1 / 5 \times 2 / 3$
(ii) $3 / 4 \times 8 / 10$
$\mathrm{N} \times \mathrm{N} \quad$ Here reduce denominators and numerators using D $\times \mathrm{D}$ common factors.
$=\frac{1 \times 2}{5 \times 3}=\frac{3}{1} \times \frac{1}{5}$
$=\underline{2} \quad \frac{\mathrm{~N} \times \mathrm{N}}{\mathrm{D} \times \mathrm{D}}$

$$
\begin{aligned}
& =\frac{3 \times 1}{1 \times 5} \\
& =\frac{3}{5}
\end{aligned}
$$

Activity:

1. ${ }_{3}^{\underline{2} \times \underline{1}}$
(4) $\frac{3}{4} \times \frac{2}{5}$
(7) $\frac{1}{3} \times \frac{1}{3}$
2. $\frac{1}{3} \times \frac{1}{2}$
(5) $\quad \begin{aligned} & 1 \times \underline{1}_{2} \\ & 2\end{aligned}$
(8)
1×1 44
3. $\frac{2}{5} \times \frac{10}{12}$
(6) $\frac{4}{5} \times \frac{3}{8}$

LESSON 77

TOPICAL QUESTIONS ON FRACTIONS.

1. Add : $3 / 7+2 / 7=$
2. Shade $3 / 3$ of
3. Find the first 3 equivalent fractions for
a) $2 / 5$
b) $\quad 1 / 6$
4. Find the missing number

5. Reduce $4 / 12$ to the lowest terms.
6. Use $>,<$, or $=$
a) $1 / 2-2 / 3$
b) $2 / 3-\quad 1 / 6$
c) $2 / 3^{-} \quad-\quad 6 / 9$
7. Add the following
$2 / 3+1 / 4$
8. Subtract
$1 / 4-1 / 3$
9. Find the reciprocal of the following:
a) $\frac{2}{3}$
b) $\frac{3}{8}$
c) $\frac{7}{3}$
d) $\frac{1}{6}$
e) $\frac{5}{2}$

10(a) Arrange the following fractions in ascending order

$$
\begin{array}{lll}
\frac{1}{5} & \frac{1}{2} & \frac{1}{4}
\end{array}
$$

b) Arrange the following fractions in ascending order.

$$
\frac{1}{2}, \quad \frac{3}{4} \quad \text { and } \quad \frac{5}{6}
$$

SIR APOLLO KAGGWA SCHOOLS P. 4 TERM II

LESSON 1

SUBTOPIC : Decimal fractions
Content : Definition:
A decimal fraction is a part of a whole shown by a decimal point. writing (decimals fractions) in words

Examples

a) Write 0.4 in words: Four tenths or zero point four.
b) Write 2.47 in words-Two and forty seven hundredths.
c) Write 23.14 in words- Twenty three and fourteen hundredths.

ACTIVITY : EXERCISE 5r page Nos 1-22 (MK New edition)

LESSON 2

SUBTOPIC : Writing decimals in figures

CONTENT :

Examples

a) Thirty three and four tenths.
b) Thirty three 3

Four tenth $\quad \begin{aligned} & \quad \begin{array}{l}0.4 \\ 3\end{array} \\ & \end{aligned}$
b) Twelve hundredths

$$
\frac{12}{100}=0.12
$$

c) Five hundred twenty and six tenths.

Five hundred twenty Six tenths

ACTIVITY : EXERCISE: 5(s) page 99 (MK New edition)

LESSON 3

SUBTOPIC: Expressing fractions as decimals

CONTENT

Examples
I. Express $\underline{3}$ as a decimal

10
$\frac{3}{10}=$
0×10
0×10
$=$
$0 \times 10-\frac{-0}{30}$
3×10

- 30
$\therefore \underline{3}=0.3$
10
ii) Express $\underline{24}$ as a decimal.

100
$24=$
$100 \quad 0.24$
10024
0x100-0
$2 \times 100=240$
$2 \times 100=\underline{200}$ 400
$4 \times 100=-\underline{400}$
$\therefore \frac{24}{100}=0.24$

Example III

$$
1 / 2=
$$

$2 \mid 1$
$0 \times 2 \underline{0}$
10
$5 \times 2-10$
$\therefore 1 / 2=0.5$

ACTIVITY: Exercise 5 r page 093 Mk old editions.

LESSON 4

SUBTOPIC: EXPRESSING DECIMALS AS COMMON FRACTIONS

Example a) change 0.3 into a common fraction.
$0.3=3 / 10$
b) $0.4=\frac{4}{10}$
c) $0.24=\underline{24}$

ACTIVITY: Exercise 5 U page 100 MK BK 4 (new edition)

LESSON 5

SUBTOPIC : Adding decimal fractions.

Content : (i) Adding decimal fractions using the numberline.
Example (i) Add: $0.2+0.5$

\therefore The sum of 0.2 and 0.5 on the number line is 0.7 .
Example(ii) Add without using the number line.
$0.2+0.5$ (Arrange vertically according to place value).

0.2
+0.5
$0 \quad .7$

(iii) Word Problems

Example 1: I ate 0.2 of a cake in the morning and 0.7 of it in the evening. What decimal fraction did I eat altogether?

$$
\begin{array}{r}
0.2 \\
+\quad 0.7 \\
\hline 0.9 \\
\hline
\end{array}
$$

Example $\overline{2: \text { A pupils drank } 3.9 \text { litres of milk on Monday and } 8.4 \text { litres on Tuesday. How }}$ many litres of milk were drunk altogether?
Monday $\ldots \ldots \ldots \ldots \ldots \ldots .3 .9$
Tuesday................. $\frac{+8.4}{12.3}$ litres

ACTIVITY: Exercise 5x Pg 102 and Exercise 5z I Pg 104

Remarks

LESSON 6

SUBTOPIC : Adding decimal fractions:

CONTENT : Adding decimal fractions using the abacus.
Example 1 (A) Without carrying:
Add 1.3 + 2.6

Example 2 (B) While carrying

ACTIVITY (A) Draw the abacus to show these additions below:

1. $3.2+4.6$
2. $0.4+5.3$
3. $1.1+2.7$
4. $2.3+3.2$
5. $7.1+2.0$
6. $2.1+3.1$
(B) Use the abacus to work out the following decimal fractions.
(1) $1.3+1.9$
(3) $2.8+3.2$
(2) $1.7+1.6$
(4) $0.9+0.8$

Remarks

LESSON 7

SUBTOPIC : Subtraction of decimal fractions.
CONTENT i. Using a number line
Example $0.5-0.3$

$\therefore 0.5-0.3=0.2$
ii. Using abacus method

Example 3.7 - 1.4

$\therefore 3.7-1.4=2.3$
iii. Subtracting decimals without using number lines and abaci.

Examples:

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
(a) 3.3-1.8
(c) 3.3
= 3 . 8
-1.6

- 1.6

2. 2

-

(b) $4.2-1.8$
$=\begin{array}{r}4.2 \\ -1.8 \\ \hline 2.4\end{array}$
iv. Word problems.

Examples:

1. Aisha had 7.2 metres of a string. She sold 3.5 metres. What length of the string did she remain with?

She had	7.2 metres
She sold $-\quad 3.5$ metres	
She remained with	3.7 metres

2. Musoke bought 10 litres of cooking oil.

He gave away 4.5 litres. How many litres of cooking oil did she remain with?

He bought	10.0 litres
He gave away	$\underline{-4.5 \text { litres }}$
He remained with	$\underline{5.5 \text { litres }}$

ACTIVITY: Exercise $5 z 5,5 z 6,5 z 8$ and $5 z 9$ (MK - New Edition pag 111)
REMARKS:

LESSON 8

SUBTOPIC : Writing decimals
CONTENT : (a) Writing decimals as mixed fractions.

Examples

1. Write 1.5 as a common fraction.

A common fraction is a fraction which has a numeration and a denominator.
Therefore $1.5=1+\frac{5}{10}=1 \frac{5}{10}$
2. Write $12.9=12+\frac{9}{10}=\frac{9}{10}$
b) Writing mixed fractions as decimals.

Examples:

i. Change $1 \frac{7}{10}$ to decimal fraction.

$$
\begin{aligned}
& 1 \frac{7}{10}=1+\frac{7}{10} \\
&= 1+0.7 \\
&= 1.0 \\
& \frac{+0.7}{1.7}
\end{aligned}
$$

ii. Change $2 \frac{4}{10}$ to decimal.

$$
2 \begin{aligned}
\frac{4}{10} & =2+\frac{4}{10} \\
& =2+0.4 \\
& =2 \cdot 0 \\
& \frac{+0.4}{2 \cdot 4}
\end{aligned}
$$

ACTIVITY: Exercise 5W (MK - New Edition Page 101)

LESSON : 9

SUBTOPIC : Ordering decimal fractions. CONTENT:
i. Arranging decimal fractions using a number line.
(a) Arranging from the smallest to the biggest (largest) - Ascending order or increasing order.

Example:
Arrange the following decimals in ascending order.
$0.7,0.2,0.4$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

The arrows are shorter with smaller decimal fractions e.g 0.2
The arrows are longer with bigger (longer) decimal fractions e.g 0.7
\therefore Ascending order of the decimals is: $0.2,0.4,0.7$
ii. Arranging decimal fractions without using a number line.
(b) Arranging from the biggest (longest) to the smallest. Descending order or decreasing order.

Example:

Arrange $0.4,4,0.04$ beginning with the biggest.
$0.4^{\text {2nd }}=\frac{4}{10}$,
$44^{\text {st }} \quad=\frac{4}{1}$
$0.043^{\text {rd }}=$

The largest denominator is taken as the L.C.M
In this case the L.C.M $=100$.
Multiply each fraction by 100.

$$
\begin{aligned}
& 0.4=\frac{4}{10} \times 100 \\
&=40 \\
& 4=\underline{4} \times 100 \\
& 1 \\
&=400 \\
& 0.04=\underline{4} \times 100 \\
& 100 \\
&=4 .
\end{aligned}
$$

Comparing the products, the largest one shows the largest decimal and the smallest product shows the smallest decimal.
\therefore Descending order is $4,0.4,0.04$
ACTIVITY: Exercise 5Y page 97 MK Bk (Old Edition)

REMARKS:

LESSON: 10
TOPIC : GRAPHS AND TEMPERATURE
Subtopic: Pictographs and bar graphs Definition:
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Graph; A graph is a diagram representing information in an organized manner Examples of graphs

Content : (a) Pictographs are also called picture graphs. They are diagrams representing information using pictures.
To draw a pictograph, we use symbols. The symbols may represent one on more items.
The symbol and all the items it represents is called a scale.

Example

Stands for 5 trees. How many trees are in

One tree stands for 5 trees 3 trees stand for (5×3) trees 3 trees stand for 15 trees.

0 . The graph below show the number of balls picked by four sisters from a shop.

Scale
represents 8 balls
a) Who picked the largest number of balls ?
b) Who picked the smallest number of balls?
c) How many balls did Diana pick?
d) If each costs shs. 1000, how much would Doreen pay?

ACTIVITY : Exercise 6b page 116 Mk bk 4 (New edition)
(b) Bar graphs:- They are diagrams representing information using bars. The bars can be drawn vertically or horizontally.

The graph below shows the daily attendance of P. 4 pupils for a week

a) How many pupils were present on Thursday?
b) On which day were the same number of pupils present?
c) On which day was the biggest number of pupils present?
d) How many pupils were present on Monday and Thursday?

ACTIVITY: Activity 6 g page 113 Mk bk 4 (old edition)

LESSON 11

SUB TOPIC :Tally graphs
Tally graphs are diagrams that represent information using symbols called tallies.

Content : i. To draw tally graphs, we first collect information. We may draw tallies and use them to count and group things in fives.
ii. Tallies are used to count and group things or objects as follows:

iii. Writing tally marks using tallies. Examples:
a)
b)

c)

iv. Making tally marks to represent these numbers.

Examples
a) $8=$ OgO MGO
b) $14=$

c) $20=$

ACTIVITY : Exercise 6a and 6b page 106-107 MK Old Edition
REMARKS:

LESSON 12

SUBTOPIC : Tallies and tables.
CONTENT: (a) Drawing tables. Tallies and tables

Examples

1. Pupils in P. 4 were given in a Math test and scored the marks that were represented by the tallies as shown below:

Diana:

Tom:

Draw a table and represent the information shown by the given tallies.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

NAME	Peter	Diana	Tom	Mary
TALLY MARKS	4	8	3	12

(b) Making tallies
2. Show the given information on the table below using tallies.

Days of a week	MON	TUE	WED	THUR	FRI
$\mathrm{n}($ EGGS $)$	4	0	7	11	16

DAYS OF A WEEK
 MON

TUE
WED

THUR

FRI

NUMBER OF EGGS
4

0
7

11

16

ACTIVITY : Exercise 6c page 108 MK Old Edition REMARKS:

LESSON 13

SUBTOPIC: Tallies and bar graphs
Content : Tallies and bar graphs
(a) Drawing bar graphs from tally graphs

Examples

1. Four children in a group bought sweets from a shop.

Each one's sweets were recorded in tally from as shown below:

NAMES	TALLIES
Doreen	Ogep
Sam	
Joan	
Paul	

Draw a bar graph using the above tallies.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

A BAR GRAPH SHOWING SWEETS BOUGHT BY THE CHILDREN.

 Children
b) Making tallies from bar graphs.

Example:
ii. The bar graph below shows the number of flowers picked by five girls.

Use it to draw a tally graph.

A TALLY GRAPH SHOWING FLOWERS PICKED BY GIRLS.

NAMES	TALLIES
Fatuma	
Mary	ggeg go

Powered by: -iToschool- \| www.schoolporto.com | System developed by: lule 0752697211

ACTIVITY : Exercise 6d page 109 (Mk Old edition).
Remarks:

LESSON 14

SUB TOPIC : Temperature
CONTENT : Definition
Temperature is the degree of hotness or coldness of an object.
Temperature is measured in degrees and it is written as ${ }^{\circ} \mathrm{C}$ or ${ }^{0} \mathrm{~F}$.
(i) Reading temperature on the thermometers.

- clinical thermometer.

The temperature is $67^{\circ} \mathrm{C}$.
Maximum and minimum thermometer

Minimum
Maximum

From above (i) the Maximum temperature $=40^{\circ} \mathrm{C}$
(ii) the Minimum temperature $=20^{\circ} \mathrm{C}$
(iii) Temperature graphs.

The graph below shows the temperature of four girls.

No. of children
a) Who had the highest temperature?

Ajok had the highest temperature.
b) What was the lowest temperature recorded?
$20^{\circ} \mathrm{C}$
ACTIVITY : Exercise 6(j), 6(K) and 6(i) page 116-119 (Mk Old edition).
Remarks:

Lesson 15:

TOPICAL QUESTIONS FOR GRAPHS AND INTERPRETATION OF TEMPERATURE

1. If
 stands for 15 pupils, how many pupils are in

2. A boy counted Red and Blue cars daily for a week and recorded the findings as shown below.

THE GRAPH BELOW SHOWS THE NUMBER OF CARS COUNTED FROM MONDAY TO FRIDAY.

Powered by: -iToschool- | www.schoolporto.com | System developed by: Iule 0752697211

a) On which day was the same number of cars counted?
b) What was the least number of red cars counted in the week?
c) How many red cares were counted on Wednesday?
d) How many more red cares than blue cars were counted on Friday?

THE GRAPH SHOWS MANGOES EATEN BY FIVE CHILDREN

(a) How many oranges were eaten by Tom, Sam and Anna?
(b) How many children ate the same number of mangoes?
(c) How many mangoes did all the children eat?

LESSON 16

TOPIC : ALGEBRA
SUBTOPIC : USING LETTERS FOR NUMBERS
CONTENT : (i) Revision: find the missing numbers in the box.

Oral discussion: Find the missing numbers in the box:

Exercise (A)
Exercise (B)

1. $\square-3=5$
2. $\square+3=8$
3. $-\square 6=4$
4. $\square+6=11$
5. $\square-7=10$
(ii) Using the unknown:

The unknown is any letter of the English alphabet.

Find P :
Example 1. $P+5=11$

$$
P+5-5=11-5
$$

Subtract 5 from each side

$$
P \quad=6 \text { Ans. }
$$

Example 3. Find m :

$$
\begin{aligned}
& m-3=7 \\
& m-3=7
\end{aligned}
$$

Add 3 to each side

$$
\begin{aligned}
\mathrm{m}-3+3 & =7+3 \\
\mathrm{~m} & =10 \text { Ans. }
\end{aligned}
$$

Find X :
Example 2: $6+x=15$

$$
6+x=15
$$

Subtract 6 from each side

$$
\begin{aligned}
6-6+x & =15-6 \\
x \quad & =9 \text { Ans. }
\end{aligned}
$$

Example 4: find k :

$$
\begin{aligned}
& \mid k-1=0 \\
& k-1=0
\end{aligned}
$$

Add 1 to each side
$\mathrm{k}-1+1=0+1$
$\mathrm{k} \quad=1$ Ans.

ACTIVITY : Exercise 16c No. 1-10 Pg 246 Mk (New Edition)
Exercise 16e no. 1 - 10 Pg 247 MK (New Edition)

REMARKS.

LESSON 37

SUBTOPIC : Using letters for numbers.
(i) Adding letters for numbers.

Example
Work out (a) p + p

$$
P+p=2 p
$$

(b) $4 y+y$
$4 y+y=5 y$.
(c) $3 a+a+2 a$

$$
=6 \mathrm{a} .
$$

(d) Find the perimeter of the figure below.

$$
\begin{aligned}
P= & s+s+s \\
p= & 3 y+2 y+y \\
& =6 y .
\end{aligned}
$$

ACTIVITY : Exercise 16f page 248 (Mk new edition)
Exercise 16i page 250.
REMARKS.

LESSON 18

SUBTOPIC : Using letters for numbers.
(ii) Subtracting letters for numbers.

Example: Work out
(a) $2 \mathrm{a}-\mathrm{a}$.
$2 a-a=a$.
(b) $5 y-2 y$
$5 y-2 y=3 y$
(iii) Adding, and Subtracting letters for numbers.

Workout (a) 3a + a - 2a

$$
4 a-2 a=2 a .
$$

(b) $2 y-3 y+4 y$
$2 y+4 y-3 y$ $6 y-3 y=3 y$.

LESSON 18

SUBTOPIC : COLLECTING LIKE TERMS

CONTENTS
Learners collect numbers with like terms
e.g $\quad x+y+x+3 y+x$
$(x+x+x)+3 y+y$ $3 y+4 y$

ACTIVITY : Subtract the following:
a) $7 k+2 k$
b) $10 p-p$
c) $2 y+3 y-4 y$
d) $\quad \mathrm{k}+2 \mathrm{k}-\mathrm{k}$
e) $p-3 p+4 p$

REMARKS:

LESSON 19.

SUB TOPIC : collecting like terms CONTENT
(i) Involving addition.

Examples: (a) Collecting like term $x+y+x+3 y+x$

$$
(x+x+x)+(3 y+y)
$$

$3 x+4 y$.
(b) $2 k+4 m+k+3 d+m$ $(2 k+k)+(4 m+m)+3 d$
$3 \mathrm{k}+5 \mathrm{~m}+3 \mathrm{~d}$.
ACTIVITY : Exercise 13 c page 242 Mk bk 4 (old edition)
REMARKS.

LESSON 20

SUBTOPIC: Collecting like terms.

CONTENT : Involving subtraction and addition.
Example (a) work out $\begin{array}{r}4 \mathrm{k}+\mathrm{n}-\mathrm{k} \\ 4 \mathrm{k}-\mathrm{k}+\mathrm{n}\end{array}$
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
3 k+n .
$$

$$
\text { (b) } \begin{gathered}
2 m+4 k-m-2 k \\
2 m-m+4 k-2 k \\
M+2 k .
\end{gathered}
$$

(c) $3 y-2 x-y$
$3 y-y-2 x$
$\underline{2 y}-2 x$..
ACTIVITY : Exercise 16k page 252, Mk primary mathematics (New Edition)
REMARKS:

LESSON 21

SUBTOPIC : Subtraction (1) with Addition and Subtraction.

 CONTENT : To substitute is to replace.Example Given that $a=4 \quad b=3$ and $c=6$
Find a) a + c
b) $a-b$
c) $a+b-c$
$=\quad 4+6$
4-3
4+3-6
7-6
$=$
10
1

ACTIVITY : Exercise 16 n page 253, Mk primary mathematics (New Edition)

LESSON 22

SUBTOPIC: SUBSTITUTION (2) WITH MULTIPLICATION)
CONTENT
Interprete
$2 y$ means $2 x y$
Xy means Xxy
Abc means a xbxc

Example

Given that $\mathrm{a}=4 \quad \mathrm{~b}=3$ and $\mathrm{c}=5$
Find

1) $3 a$
$3 \mathrm{a}=3 \times \mathrm{a}$
ii) abc
$=3 \times 4$
$=a \mathrm{xb} \times \mathrm{c}$
$=12$
$=4 \times 3 \times 5$
$=60$
iii) ca
$=\mathrm{cxa}$
$=5 \times 4$
$=20$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

ACTIVITY

Exercise 16(0) Mk primary Mathematics page 254 bk 4 (New edition)
REMARKS.

LESSON 23

SUBTOPIC: SUBSTITUTION III (MULTIPLICATION AND ADDITION/SUBTRACTING) CONTENT

Example
$a=4$ and $b=3$
find $4 a+2 b$

$$
\begin{aligned}
& =(4 x a)+(2 x b) \\
& =(4 \times 4)+(2 \times 3) \\
& =16+6
\end{aligned}
$$

$$
=\quad 22
$$

Example

$3 a-2 b$
$=(3 x a)-(2 \times b)$
$=(3 \times 4)-(2 \times 3)$
$=12-6$
$=6$
ACTIVITY
Given that $a=3, b=4$ and $c=5$
Find
a) $5 a$ _ $2 b$
b) $6 c-4 a$
c) $2 c-b$
d) $3 b+a$
e) $A _2 b$
f) $6 a-2 b$
g) $3 b-2 c$
h) $4 b-c$
i) $2 c-2 b$

REMARKS

LESSON 24

SUB TOPIC: SUBSTITUTION (IV) (with division)

CONTENT

Example
Given that $a=3 b=4$ and $c=6$
$\begin{aligned} \text { Find a) } \frac{b}{2} \quad & =b \div 2 \\ & =4 \div 2=2\end{aligned}$
b) $\frac{a+c}{3}=\frac{3+6}{3}=\frac{9}{3}=9 \div 3=3$
c) $\frac{2 a+2 b}{2}=\frac{2 \times 3+2 \times 4}{2}$

$$
=\quad \frac{6+8}{2}
$$

$$
=\quad \frac{14}{2} \quad 4 \div 2
$$

ACTIVITY

Given that $\mathrm{X}=4 \mathrm{y}=6$ and $\mathrm{Z}=8$
Find
a) $\frac{Z}{x}$
b) $\frac{2 y+3 x}{y}$
c) $\frac{Z}{4}$
d) $\frac{y+z+x}{y}$

REMARKS.

LESSON 25

SUBTOPIC : EQUATIONS

CONTENT : ADDITION IN EQUATIONS (Lower work)

Examples

$\square+3=9$
$\square+3-3=9-3$
$\square=6$
2). $4+y=10$

$$
\begin{gathered}
4-4+y=10-4 \\
Y=6
\end{gathered}
$$

ACTIVITY : Exercise 13g page 245 (Mk old edition).

LESSON: 26

SUBTOPIC : SOLVING FOR UNKNOWN (SUBTRACTION)

CONTENT(Lower class)
Learners will solve for unknowns in the equations.
e.g
a)

$3=5$
b) $y-4=7$

$3+3=5+3$
$y-4+4=7+4$
$y=11$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
c) $5-y=2$

What number is subtracted from 5 to get 2

$$
\begin{aligned}
& y=5-2 \\
& Y=3
\end{aligned}
$$

ACTIVITY: Exercise 13 h page 246 Mk bk4 (old edition)
REMARKS.

LESSON 27

SUBTOPIC : MULTIPLICATION IN ALGEBRA

Example

1) $3 x y=12$
$3 y=12$
$\frac{3 y}{3}=\frac{12}{3}$
$y=4$
2) $13 t=26$
$13 \mathrm{t}=26$
$\frac{13 t}{13}=\frac{26}{13}$
13
$t=2$

ACTIVITY : Exercise 13j page 247 (MK old Edition)
REMARKS.

LESSON 28

Subtopic : solving for unknown in division.

CONTENT:

Learners will find unknown in the equations involving division.
e. g
a) $x \div 3=2$
$x=2 \times 3$
$x=6$
b) $\frac{x}{3}=2$
$x=2 \times 3$
$x=6$
c) $36 \div x=9$ (What number can be divided by 36 to give 9) $x=\frac{36}{9}$
$=4$
ACTIVITY: Exercise 13k page 248 Mk bk 4 (old edition)

LESSON 29

SUBTOPIC : MIXED EQUATIONS (ADDITION)
CONTENT:
Examples
i) $2 y+3=15$
$2 y+3-3=15-3$
ii) $\quad 4 p+1=17$
$4 p+1-1=17-1$
$\frac{2 y}{2}=\frac{12}{2}$
$\frac{4 p}{4}=\frac{16}{4}$
$Y=6$
$\mathrm{p}=4$

ACTIVITY
Solve these equations
a) $5 m+2=12$
b) $7 p+1=15$
c) $4 m+5=25$
c) $3 q+3=21$
d) $2 p+2=20$
e) $6 y+1=13$
f) $2+4 p=10$

REMARKS.

LESSON 30

SUBTOPIC: MIXED EQUATIONS (SUBTRACTION)

CONTENT:

Examples

I) $4 p-2=10$ $4 p-2+2=10+2$
 $\frac{4 \mathrm{p}}{4}=\frac{12}{4}$
 $P=3$

ACTIVITY:
Solve these equations
a) $2 y-3=5$
b) $3 m-2=13$
c) $6 p-1=23$
d) $10 y+1=21$

REMARKS.

LESSON 31

SUBTOPIC: FORMING AND SOLVING EQUATIONS

CONTENT : addition and subtraction of equations.

Examples.

1. Think of a number add three to it the answer is 14 . What is the number? Let the No. be y.

$$
\begin{aligned}
& Y+3=14 \\
& Y+3-3=14-3 \\
& Y=11
\end{aligned}
$$

The number is 11
2. Think of a number subtract 3 from it my answer is 17 . What is the number? Let the No. b n

$$
\begin{aligned}
& \mathrm{N}-3=17 \\
& \mathrm{~N}-3+3=17+3 \\
& \mathrm{~N}=20 \\
& \text { The number is } 20 \\
& \hline
\end{aligned}
$$

ACTIVITY: Exercise 16t and 16u pages 257 and 258 (Mk new edition).
REMARKS.

LESSON 32

SUBTOPIC : FORMING AND SOLVING EQUATIONS

CONTENT : MULTIPLICATION AND DIVISION OF EQUATIONS.

Examples.

There are 4 groups in a class. Each group has the same number of pupils. Altogether there are 40 pupils. How many pupils are in each group?

Solution
Let the number of pupils in each group be by

$$
\begin{array}{ll}
4 \mathrm{xy} & =40 \\
4 \mathrm{y} & =40 \\
\frac{4 y}{4} & =\frac{40}{4} \\
\mathrm{Y} & =10
\end{array}
$$

Therefore: 10 pupils are in each group.
2. A parent had some money and shared it among 6 children. Each child got sh. 500. How much money was it?
Solution

Let the amount of money be C

$$
C \div 6=500
$$

$C \div 6 \times 6=500 \times 6$
$C=3,000 /=$
It was 3000/=

```
Or
C =500
6
```

$6 \times \underline{C}=500 \times 6$
6
$\mathrm{C}=3000 /=$

ACTIVITY : Exercise 16 V NOS. 1 - 4 page 259.
Exercise 16w Nos. 1 - 4 page 260.
REMARKS.

LESSON 33:

TOPICAL QUESTIONS FOR ALGEBRA

1. Write in short $y+y+y+y=$
2. Simplify
a) $N+M=2 n+4 M$
b) $4 t+7 y-3 t$.
3. Given that $a=2, b=4, C=6$

Find;
a) $a+b-c$
b) $2 a+b$
c) $3 a+2 c$
d) $a c-2 b$
e) $2 c+3 b$

2a
4. Work out
a) $x+3=7$
b) $y-4=10$
c) $6 y=36$
d) $\mathrm{w} \div 6=2$
5. Solve for unknowns
a) $5 \mathrm{~m}+2=12$
b) $2 y-3=5$
6. I think of a number when I add 3 to it the result is 7 . What is the number?

LESSON : 34

TOPIC: GEOMETRY

SUBTOPIC : Definitions: - Plane figures (shapes)
(i) A plane shape is a shape with a flat surface. A closed figure or shape with many sides is called a Polygon.
(ii) A triangle is a three sided figure.
(iii) An equilateral triangle is a triangle with all of its sides equal.
(iv) An Isosceles triangle is a triangle with two of its sides equal.
(v) A circle is a round figure.

Content:

Examples

> Triangles (equilateral, isosceles, scalene, right angled).
> Quadrilaterals (Rectangle, square, Rhombus, trapezium parallelogram, kite)
> Circles are semicircle, Quadrant (A quarter a circle)
> Ovals

ACTIVITY: Draw and name the above shapes.

LESSON 35

SUBTOPIC : Solid shapes

ContentExample s
Draw the following shapes
a) Cone
b) cylinder
b) Cube
d) Cuboid
2) Name the following solid shapes
a) Triangular pyramid

c) rectangular pyramid.

b) Triangular prism

ACTIVITY : Draw and name the shapes.
d) Square

LESSON 36

SUBTOPIC : Naming parts of solid shapes

CONTENT
Example

b) Cube;

A cube has 6 square faces.
8 vertices.
12 edges.

ACTIVITY

Name and count the edge and vertices of faces
$>$ Cuboid.
$>$ Cone.
> Cylinder.
$>$ Rectangular pyramid.
> Triangular pyramid.
$>$ Square pyramid.
$>$ Triangular prism.

LESSON 37

SUBTOPIC: Making circles

Content: Making circles using hard paper, strings and big toes.
A circle

i. Using hard paper:

Cut outs are made using razor blades, round objects and hard paper.

ii. Strings:

A string tied on a fixed object e.g pencil and a drawing paper is used.

iii. Big toes:

A toe is moved round a fixed point on the ground using a heel of a foot.
ACTIVITY : Making cuts outs and drawing circles using strings and toes.
Remarks:

LESSON 38

SUBTOPIC: Making circles

Content : Making circles using a pair of compasses.
A circle

A pencil fixed in the pair of compasses is moved round a fixed point on a paper using a pair of compasses.

ACTIVITY : Drawing different sizes of circles using pairs of compasses.
Remarks:

LESSON 39

SUBTOPIC: Lines of a circle.

Content : Lines of a circle.
1.

Definitions: diameter
par of a circle.

A radius is a line running from the centre to the edge of a circle.
(c) Diameter:

A diameter is a line running the edge of a circle to another passing through its centre.
(d) Chord:

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

A chord is a line joining any two points of a circle.
The chord may pass through the centre of a circle or not.
The longest chord of a circle is called a diameter.
(e) circumference:

Circumference is the distance around a circle.

ACTIVITY : Exercise 7d

Remarks:

LESSON 40

SUBTOPIC: Relationship between a radius and diameter.

Measuring using a ruler

Content : (By measuring)

Learners with guide of the teacher will draw a circle of radius 3 cm . They will extend the line to the edge of the circle. Measure the line, it will be 6 cm . So we conclude that ; diameter is twice the radius.

Or $d=2 r \quad$ Diameter $=2 x$ radius $O R$
Or $d=r+r \quad$ Diameter $=$ radius + radius

ACTIVITY : Exercise 7g (MK primary mathematics Book 4 New Edition) page 139-140.
Remarks:

LESSON 41

SUBTOPIC: Relationship between diameter and radius formula.

Content : Diameter when radius is given leaners will be guided by the teacher to use the
formula ($\mathrm{D}=\mathrm{r}+\mathrm{r}$)

1. Find the diameter of a circle whose radius is 3 cm .

$$
\begin{aligned}
R=3 \mathrm{~cm}, \text { but } D=R & +R \\
& =3 \mathrm{~cm}+3 \mathrm{~cm} \\
& =6 \mathrm{~cm}
\end{aligned}
$$

Or $D=2 r$
$=2 \times 3$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211 $=6 \mathrm{~cm}$
2. Calculate the diameter of a circle whose radius is 3.5 cm . $R=3.5 \mathrm{~cm}$ but $\mathrm{D}=\mathrm{R}+\mathrm{R}$

$$
\begin{aligned}
& =3.5+3.5 \\
& =7.0 \mathrm{~cm}
\end{aligned}
$$

Or $D=2 r$
$=2 \times 3.5$
$=7.0 \mathrm{~cm}$

LESSON 42

SUBTOPIC : FINDING RADIUS GIVEN THE DIAMETER CONTENT

In this case we use the formula
Radius = $\frac{\text { Diameter }}{2}$
Or $\quad \frac{d}{2}$
Example
Find the radius of a circle whose diameter is 12 cm .

$$
\begin{aligned}
r & =\frac{d}{2} \quad \text { but } d=12 \mathrm{~cm} \\
r & =\frac{12}{2} \quad \text { or } 12 \div 2 \\
r & =6 \mathrm{~cm}
\end{aligned}
$$

ACTIVITY

Find the radius of circles with the following diameters
a) 10 cm
b) 18 cm
c) 8 cm
d) 6 cm
e) 28 cm
f) 30 cm
g) 3.5 cm
h) 5.8 cm

REMARKS

LESSON 43

SUBTOPIC : Part of a circle

 CONTENT : Drawing parts of a circle.i) Arc

An arc is a part of a curved line that makes a circle.

ii) Circle

A circle is a complete curve.

iii) Semi circle

A semi-circle is a half a circle.

or

iv) Quadrant

A quadrant is a quarter of a circle.

v) Sector

A sector is a part of the area of a circle made by two radii.

The smaller sector is called a minor sector.
The bigger sector is called a major sector.
vi) Segment

A segment is a part of the area of a circle made by any chord which is not a diameter.

The smaller segment is called a minor segment.
The bigger segment is called a major segment.
REMARKS

LESSON 44

SUBTOPIC : Curves
 CONTENT : Definition

A curve is a bent line. It is drawn without lifting a pencil.

(ii) Types of curves

(a) Open curves:

An open curve is a curve drawn from any given point without going back to the starting point.
Examples:

b) Closed curves (intersecting curves)

A closed curve is a curve drawn from any given point but going to the starting point using intersecting lines. They do not make clear shapes. They are sometimes called intersecting curves.

c) Simple closed curves.

A simple closed curve is a curve drawn from any given point but going back to the starting point without using intersecting lines. They always form clear shapes.

A circular curve (circle)

A hexagonal curve (Hexagon)

An oval curve (oval)

ACTIVITY
Exercise 7 I page 136 MK Primary mathematics bk 4 (old edition)

LESSON 45

SUBTOPIC: Drawing, Naming and measuring lines.
CONTENT: (a) (i) Lines.

A line has no end points.
(ii) Line segments.

A line has two end points.
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
(iii) A ray.
E.P

A ray has one end point.
(b) Measuring line segments using a ruler.
(i)

(ii)

(c) Drawing line segments of
a) 3 cm
b) 8.4 cm
\qquad \rightarrow \qquad

ACTIVITY

1. Draw and name these lines
a) Line segment
b) Ray
c) Line
2. Draw a line segment measuring
a) 6.3 cm
b) 4 cm
c) $\quad 8 \mathrm{~cm}$
d) 5.1 cm
3. Measure the line segment given:

REMARKS

LESSON 46

SUBTOPIC : POLYGONS

CONTENT:

Definition.
A polygon is a simple closed plane figure.
Naming polygons.

Triangle

square

pentagon

hexagon octagon

No	Polygon	Number of sides
1	Triangle	Three sides
2	Quadrilaterals	Four sides
3	Pentagon	Five sides

Powered by: -iToschool- \| www.schoolporto.com | System developed by: lule 0752697211

4	Hexagon	Six sides
5	Heptagon	Seven sides
6	Octagon	Eight sides
7	Nonagon	Nine sides
8	Decagon	Ten sides

ACTIVITY : Draw the following polygons:
i) Triangle
ii) Pentagon
iii) Hexagon
iv) Draw and name 4 examples of quadrilaterals.

REMARKS.

LESSON 47

SUBTOPIC : ANGLES

CONTENT : TYPES OF ANGLES
(i) Right /complementary angle - They add up to 90°.
(ii) Straight/supplementary angles - Add up to 180°.

Two complementary angles make one supplementary angle.
Learners write right angle or Not right angle or straight angle in the given task. Learners are guided to measure angles using a protractor by the teacher.

ACTIVITY: Learner do exercise 7j on page 138 (Mk old edition)

LESSON 48

SUBTOPIC : MEASURING ANGLES USING A PROTRACTOR.

CONTENT

Teacher explains to the learners the scales of a protractor.
$>$ Inner scale
$>$ Outer scale
$>$ Learners identify the line measuring or reading 90° and 180° on a protractors.

Hint

$>$ When measuring angles we start from 0^{0}.
$>$ The outer scale is used when measuring starts from the left hand side.
$>$ The inner scale is used when measuring starts from the right hand side.
$>$ Learners measure drawn angles on a piece of paper.
ACTIVITY: Exercise $7 n$ page 141 Mk bk4 (old edition)

LESSON 49

SUBTOPIC: Complementary angles / right angles
These are angle which add up to 90°

Examples:

$$
\begin{aligned}
& y+50^{\circ}=90^{\circ} \text { (Right angle) } \\
& y+50^{\circ}-50^{\circ}=90^{\circ}-50^{\circ} \\
& Y+0=40^{\circ} \\
& Y=40^{\circ}
\end{aligned}
$$

c) Work out the size of angle m.
b) Find the size of angle K

$K+K+30^{\circ}=90^{\circ}$ (Right angle)
$2 \mathrm{~K}+30^{\circ}=90^{\circ}$
$2 \mathrm{~K}+30^{\circ}-30^{\circ}=90^{\circ}-30^{\circ}$
$2 K+0=60$
$\underline{2 K}=\underline{60}$
$2 \quad 2$
$\mathrm{K}=30^{0}$

$$
+00^{0}
$$

"
$m+40+15=900$ (Right angle)
$m+550=900$
$m+(55-55)=90-55$
$m+0=35^{\circ}$
$\underline{m}=35^{\circ}$
d) Find the complement of 20°.

Let the complete of 20° be X
$X+20^{\circ}=90^{\circ}$ (Right angle)
$X+20^{\circ}-20^{\circ}=90^{\circ}-20^{\circ}$
$\therefore \mathrm{X}+0=70$ 응
$X=70^{\circ}$
ACTIVITY: 1. Find the complement of the following angles.
a) 80°
b) 45°
c) 40°
2. Exercise 7 k page 139 Mk bk4 (old edition).

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Powered by: -iToschool- \| www.schoolporto.com | System developed by: lule 0752697211
REMARKS:

LESSON 50

SUBTOPIC : Finding missing angles on a straight line [supplement of angles]
CONTENT : Definition of supplementary angles - angles which add up to 180°.

- Subtract the given angle
(a) Using diagrams
(b) Without using diagrams.

Examples: (a) Find the size of angle Y .

$$
y+140^{\circ}=180^{\circ} \text { (straight angle) }
$$

$$
y+140^{0}-140^{\circ}=180^{\circ}-140^{\circ}
$$

$$
y+0=140^{\circ}-40^{\circ}
$$

$$
\therefore \mathrm{y}=40^{\circ}
$$

b) Find the size of angle n

$n+n+60=180^{\circ}$ (straight angle)
$2 \mathrm{n}+60=180^{\circ}$
$2 n+60-60=180-60^{\circ}$
$2 \mathrm{n} \quad=0$
$2 \mathrm{n}=\underline{120^{\circ}}$
22
$\mathrm{n}=60^{\circ}$

side work

$$
\begin{aligned}
& -140^{\circ} \quad \\
& \hline
\end{aligned}{ }^{180^{\circ}}
$$

d) Find the supplement of 60. Let the supplement of 60 be K

$$
\begin{aligned}
& K+60^{\circ}=180^{\circ} \text { (straight angle) } \\
& K+\left(60^{\circ}-60^{\circ}\right)=180^{\circ}-60^{\circ} \\
& K+0=120^{\circ} \\
& \therefore K=120^{\circ}
\end{aligned}
$$

c) find the value of r Illustration:

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
\begin{aligned}
& r+120^{0}=180^{0} \\
& r+120^{0}-120^{0}=180^{0}-120^{0} \\
& r+0=60^{0} \\
& r=60^{0}
\end{aligned}
$$

ACTIVITY: Exercise 7 p page 142 (MK old edition)
(ii) Find the supplementary angles of: (a) 130°
(d) 180°
$\begin{array}{ll}\text { (b) } 143^{\circ} & \text { (c) } 150^{\circ}\end{array}$

REMARKS.

LESSON 51

Subtopic: Finding missing angles in a triangle.
CONTENT: A triangle must have 3 angles and 3 sides.
Angle sum of interior angle of a triangle is 180°.
Example:
Find the value of angle X.

find x

$$
\begin{array}{ll}
x+72^{0}+48^{\circ} & =180^{\circ} \text { (interior angle sum) } \\
x+120= & =180^{\circ} \\
x & =180^{\circ}-120^{\circ}
\end{array}
$$

Learners will try angles in a right angled triangle and find missing angles
2.

$X+90^{\circ}+35^{\circ}=180^{\circ}$
$X+125^{\circ}=180^{\circ}$
$X+125^{\circ}-125^{0}=180^{\circ}-125^{\circ}$
$x+0=55$
$\therefore X=55^{\circ}$
3. Work out the value of P in degrees.

$$
P+P+40^{\circ}=180^{\circ} \text { (Interior angle sum) }
$$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
\begin{aligned}
& 2 P+40^{0}=180^{\circ} \\
& 2 P+40^{\circ}-40^{\circ}=180^{\circ}-40^{\circ} \\
& 2 P+0=120^{\circ} \\
& \frac{2 P=\frac{120^{\circ}}{2}}{2} \\
& \therefore P=60^{\circ}
\end{aligned}
$$

ACTIVITY . Exercise 7r MK bk4 (old edition) page 144.

LESSON 52

TOPICAL QUESTIONS ON GEOMETRY.

1. Draw the following shapes
a) Trapezium
b) Kite
2. How many

Faces
Edge
Vertices
3. Name the line below.

a) $A B$
b) $A C$
c) DC
\qquad
\qquad
\qquad
b) Point B
c) How many radii are shown on the circle>
d) What name is given to the shown dot round the circle?
e) If $A B=30 \mathrm{~cm}$. Find the length of $A C$.
4. Draw line segment of 5 cm
5. What name is given to a 7 sided figure.
6. What is complement of 20° ?
7. What is the supplement of 20° ?
8. Find the angle M
a)
b) Work out angle y
c) Work out angle P

Powered by: -iToschool- \| www.schoolporto.com | System developed by: lule 0752697211
m 60°
135° (y
$\square \quad 20^{\circ}$ r
(ii) Find y

(iii) Find t

SIR APOLLO KAGGWA SCHOOLS
 P. 4 TERM III LESSON PLAN

LESSON 1

SUBTOPIC: RECOGNITION OF MONEY.
CONTENTS

COINS	BANK NOTES
$50 /=$	$1000 /=$
$100 /=$	$5000 /=$
$200 /=$	$10,000 /=$
$500 /=$	$20,000=$
	$50,000 /=$

ACTIVITY: Exercise 8a page 148 (MK new edition).
REMARKS.

LESSON 2

SUBTOPIC : CHANGING SHILLINGS TO CENTS

CONTENT:

Examples

1. Change sh. 3 to cents

1 shillings $=100 \mathrm{cts}$
3 shillings $=100 \times 3$

$$
=300 \mathrm{cts} .
$$

2. Change shs. 250 to cents

1 sh = 100cts
$250 \mathrm{sh}=100 \times 250$

$$
=25,000 \mathrm{cts}
$$

Change cents to shillings

1) Change 300 ts to shillings
$1 \mathrm{Sh}=100 \mathrm{cts}$
(300)sh $=300 \mathrm{cts}$
(100)
$=3$ shillings.
ACTIVITY : Exercise 8a page 147 and 8b page 148 (Mk old edition)
REMARKS.

LESSON 3

SUBTOPIC : ADDITION OF MONEY

CONTENTS

Examples
i) Add

sh. $170+$ sh 250	ii)
Sh1 170	sh. ct
+ Sh 250	
Sh $\underline{420}$	+$13 \quad 20$ 2870

ACTIVITY
Exercise 8b MK 4 page 149 (New edition) exercise 8c Mk bk 4 page 148 (new edition)
REMARKS.

LESSON 4

SUBTOPIC: SUBTRACTION OF MONEY.
CONTENT.

Example.

How much change will you get if you have 1000/= and you spend 350/=
Example Subtract

Sh	Cts
439	35
-250	40
188	95

ACTIVITY:

Exercise 8d, e and f MK primary mathematics (old edition) 149 and 150.

LESSON 5

SUBTOPIC : MULTIPLICATION OF MONEY. CONTENT : MULTIPLICATION OF MONEY.

Example I
Multiply : sh 896
Sh $\frac{\times 6}{\underline{5376}}$

Example II

The cost of 1 loaf of bread
is sh. 1800 . Find the cost of 3 loaves
Sh. 1800
Sh. $\begin{array}{r}\mathrm{x} \quad 3 \\ 5400\end{array}$

ACTIVITY
Exercise 8d Mk bk 4 page 157.
REMARKS.

LESSON 6

SUBTOPIC: Money

CONTENT: Direct proportion

Definition:
Direct proportion means the relationship that shows how given quantities increase or decrease with their values.

Examples

i. $\quad 1$ book costs sh. 200. What is the cost of 4 similar books?

Books
1 book costs
4 books cost

Shillings
sh. 200
sh. 200
X 4
Sh. 800
ii. $\quad 2$ pens cost sh. 600. What is the cost of 1 similar pen?

Pens
Shillings
2 pens cost
sh. 600
sh 300
1 pen costs
sh. 600
2
$3 \times 2=\frac{2}{200}$
$0 \times 2=-0$
0
$0 \times 2=-0=$ sh. 300
lii 4 mangoes cost sh. 800. What is the cost of 6 similar mangoes?
Mangoes Shillings
4 mangoes cost sh. 800
sh. 200
But 1 mango costs
=sh. 300

$$
100
$$

sh. 800
4800
4
= sh. 200

$$
=\text { sh. } 200
$$

$\therefore 6$ similar mangoes cost sh. 200

$$
\begin{array}{r}
x \quad 6 \\
\text { sh. } 1200 \\
\hline
\end{array}
$$

Activity

1. 1 ruler costs sh. 400 . What is the cost of 3 similar rulers?
2. 1 pencil costs sh. What is the cost of 5 similar pencils?
3. 4 sweets cost sh. 200. What is the cost of 1 similar sweet?
4. 6 pockets of biscuits cost sh. 600. what is the cost of 1 similar pocket of biscuits?
5. 3 tins cost sh. 900 . what is the cost of 2 similar tins?
6. 5 rubbers cost sh. 1000 . what is the cost of 7 similar rubbers?

Remarks:

LESSON 7

SUBTOPIC: BUYING AND SELLING (SHOPPING BILLS) (PRICE LIST)

CONTENT

Example

Item	Price in shillings
1 bar of soap	$1000 /=$
1 kg of sugar	$1800 /=$
1 kg of maize flour	$1200 /=$
packet of salt	$400 /=$
An egg	$150 /=$

Questions

a) Find the cost of 3 kg of sugar.
b) If Allen bought 4 kg of maize flow and 1 bar or soap. How much money did she pay?
c) Calculate the cost of buying 1 bar of soap. 1 kg of sugar, 1 kg of flour, 1 packet of salt.
d) Find the total expenditure if one buys all the items above.

ACTIVITY
Exercise 8e page 152 (Mk New Edition)

LESSON 8

SUBTOPIC: SHOPPING BILLS

CONTENT

Example I

Mariam went to the school canteen and bought the following items
3 chaps at 500/= each.
4 chapats at 800/=
2 bottles of soda at 500/= each.
a) Find her total expenditure .
b) Find her balance if she went with 50000/=

Sh.5,000
-sh.4,300
Sh. 700
======

Item	Method (working)	Cost
3 Chaps	Sh. 500×3	Sh. 1500
4 Chapats	Sh. 800	Sh.800
2 Soda	Sh. 1000×2	Sh. 2000
Total		Sh.4300

Working

Chaps
Sh. 500
Sh. $\times 3$
1500
soda
sh. 1000
sh. x 2
sh. 2000
chapats:
sh. 800

ACTIVITY : Exercise 8i page 153 MK (Old edition)
More activity:

1. If Asekenye bought 2 loaves of bread at sh. 800 @ loaf, 4 books at sh. 300 per book and 4 bundles of onions at sh. 500.
a) What was her total expenditure?

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
b) If she had sh. 5000, calculate her balance.

LESSON 9

SUBTOPIC : DIVISION OF MONEY.

CONTENT
Example
4 books COST 1200/=. What is the cost of one book.
4 books cost - 1200 sh 300
1 book

300

$$
\begin{aligned}
& \frac { 1 2 0 0 } { 4 } = 4 \longdiv { 1 2 0 0 } \\
& 3 \times 4=12 \\
& \hline-0^{-1} \\
& 0 \times 4=-0 \\
& 0 \times 4=0 \\
& \underline{0}
\end{aligned}
$$

ACTIVITY
Exercise 8f page 153 (Mk new edition)

LESSON 10

SUBTOPIC : FINDING PROFIT

CONTENT
Profit = selling price - buying price.

Example

Abdul bought a shirt at sh. 800. He sold it at 1000/= what was his profit?

Buying price		sh. 800
Selling price		sh. 1000
Profit $=$	s.p	B.P
	$=$	Shs. $1000-$ sh. 800

Profit $=\quad$ Shs. 200
ACTIVITY: Exercise 8k page 155 (old Mk)

LESSON 11.

SUBTOPIC : LOSS

CONTENT

Loss is the amount of money when the buying price is more than the selling price.

$$
\text { Loss }=\quad \text { Buying price }- \text { selling price }
$$

BP - SP
The buying price can also be called cost price (CP)

Example

John bought a shirt at 7200/= and sold it at 6000/= calculate his loss.

$$
\begin{aligned}
\text { Loss } & =\quad \mathrm{BP}-\mathrm{SP} \\
\mathrm{BP}= & 7200 /= \\
\mathrm{SP}= & 6000 /= \\
\begin{aligned}
\therefore \text { Loss } & =\text { sh. } 7200-\text { sh. } 6000
\end{aligned} & =\text { sh. } 7200 \\
& \\
& =\text { sh. } 6000 \\
& =\text { Sh. } 1200
\end{aligned}
$$

ACTIVITY

MK Primary Mathematics Book 4 (Old edition) Exercise 81 page 156.

LESSON 12

SUBTOPIC: POSTAGE RATES

CONTENT

Refer to table on page 162 Mk (old edition)

Example

Joseph sends 2 letters to Kenya and 3 letters to Tanzania. How much will he pay altogether.

2 letters to Kenya
3 letters to Tanzania
Total amount
sh. $400 \times 2=$ sh. 800 side work
sh. $400 \times 3=+$ sh. 1200 sh. 800
Sh. 2000
sh. 400

$\times \quad 3$

sh. 1200

Therefore, Joseph will pay 2000/=
ACTIVITY
Exercise 8q
Page 163 Mk (old edition)

LESSON: 13

TOPICAL QUESTIONS (MONEY)

1. How much money is in 3 one hundred shilling coins.
2. Change
a) 5 shillings to cents
b) 600 cts to shillings.
3. Work out:
a) Shs
cts
Sh
cts
43
40
52 30
$+14$
30
-11
4. The cost of 1 pen is $400 /=$. Find the cost of 6 similar pens.
5. Study the price list below and answer the questions that follow.

Item	Price
1 book	$1500 /=$
1 packet of biscuit	$2000 /=$
1 bar of soap	$800 /=$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

A sweet	100/=

a) Find the cost of 4 packets of biscuits
b) Find the cost of buying 1 book and a sweet
6. 3 pens cost sh. 900 . What is the cost of 1 pen?
7. An article costs sh. 300. Calculate the profit made if is sold at sh. 700
8. Tom bought a shirt at $1000 /=$ and sold at $800 /=$. What was his loss?

LESSON 14

SUBTOPIC : CHANGING WEEKS TO DAYS

CONTENT
1 week has 7 days
Example
How many days are in 3 wks.
1 wk - 7 days
3 wks - $3 x 7=21$ days.

Example

Joseph spent 6 weeks in London. How many days were they
1 wk - 7 days
6wk - 6×7
$=21$ days
ACTIVITY
Exercise 9p 178 (Mk new edition).

LESSON 15

SUBTOPIC : CHANGING DAYS TO WEEKS

CONTENT

Example

How many weeks are there in 63 weeks?

In 63 days there are 9 weeks.

ACTIVITY

Exercise 9n page 176 (old Mk).

LESSON 16

SUBTOPIC : ADDITION OF WEEKS AND DAYS

CONTENT

Example:

Add :	Weeks	Days	SW
	5	5	5
+	4	6	+6
	$\underline{10}$	$\underline{3}$	$\underline{11 \text { days }}$

$$
\begin{aligned}
& \begin{array}{l}
1 \text { week } \\
11 \div 7
\end{array} \\
& \\
& \\
& \\
& \\
& 3 \text { days }
\end{aligned}
$$

LESSON 17

SUBTOPIC: CHANGING HOURS TO MINUTES

CONTENT

HINT: 1 Hour $=60$ minutes , $1 / 2$ an $\mathrm{hr}=30$ minutes, $1 / 4$ an hr is 15 min .
Example
Change 4 hours to minutes
$1 \mathrm{hr}=60$ minuts
$4 \mathrm{hrs}=(4 \times 60) \mathrm{min}$

$$
=240 \mathrm{~min} .
$$

b) How many minutes are in $31 / 4$ hours?

$$
\begin{aligned}
& 31 / 4 \mathrm{hrs}=(3 \times 1 / 4) \text { hours } \\
& 1 \mathrm{hr}=60 \mathrm{~min} \\
& 3 \mathrm{hrs}=(3 \times 60)=180 \mathrm{~min} \\
& 1 / 4 \mathrm{hr}=(1 / 4 \times 60)=15 \mathrm{~min} \\
& 1 / 4 \mathrm{hr}=(1 / 4 \times 60)=15 \mathrm{~min} \\
& 31 / 4 \mathrm{hrs}=(180+15) \mathrm{min} \\
& =195 \mathrm{~min} .
\end{aligned}
$$

ACTIVITY:
Exercise 9b page 163 (New MK)

LESSON 18

SUBTOPIC : CHANGING MINUTES TO HOURS

CONTENT,
Example.
Change 180 minutes to hours.
$=\quad 3 \mathrm{hrs}$

Example

Peter spent 240 minutes in an exam. How many hours ere they.
60 min
-
1 hr
240 min
$\frac{240}{60}$
$=$
4 hrs .

ACTIVITY:
Exercise 9c Mk primary mathematics bk 4 (New edition) page 163 exercise 9c.

LESSON 19

SUBTOPIC : ADDITION OF TIME.

CONTENT : Addition of hours and minutes

Examples	
1. Hrs	Min
	1
$+\quad 3$	30
	5
$================$	

ii) Add 3 hrs 35 minutes to 4 hours 42 minutes

Hrs Mi
$3 \quad 35$
$+4 \begin{aligned} & 42 \\ & 8\end{aligned}$
======================
ACTIVITY:
Exercise 9e Mk bk 4 page 165.

LESSON 20

SUBTOPIC : SUBTRACTION OF TIME

CONTENT

a) Subtract
HRS Min

30
\qquad
150

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
b) A party lasted 6 hours 30 minutes. If 1 hr 45 minutes were used to serve food. How long did the other events take?

Hrs	Min
6	30
$-\quad 1$	45
	4

Therefore the other events took 4 hrs 45 minutes.
ACTIVITY :
Exercise 9g page 171 Nos. 1 - 5 and exercise 9h page 172 Nos. 1 - 5 (Mk old edition)

LESSON 21

SUBTOPIC : DURATION OF TIME
 CONTENT : DURATION OF TIME

Examples

i) Maishara started walking from her home at 7:15 am and reached school at 8:15 am. How long did it take her?

	$H \mathrm{Hrs}$	Min
		$8 \quad: 15 \mathrm{am}$
Masike reached school at	-	7

Therefore she took 1 hour.
ii) The party started at 1:30 p.m and ended at 9:00 p.m. Find out how long it lasted.

	Hrs	Min
The party ended at	9	00
It started at	-	1
It took		3

It took 7 1/2 hrs

ACTIVITY:

Exercise 9 m page 176 Mk bk 4.

LESSON 22

SUBTOPIC : MULTIPLICATION OF TIME

CONTENT

Multiplication of hours and minutes.

Example 1

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Hrs	Min	side work	
3	20	20	$80 \div 60$
\times	4	$\frac{x 4}{80}$	$=1 r 20$

Example ii

Hrs	min	side work	
2	30		30
X	3	$90 \div 60$	
X	30		3
7	$=1 r 30$		
$==========$			

ACTIVITY

Exercise 9i Mk bk 4 page 171.

LESSON 23

SUBTOPIC DIVISION OF TIME

Examples

1. Divide

3 hrs and 10 mins
2. Divide:
Hrs Mins

ACTIVITY : Exercise 9j page 174 (Mk old edition)

LESSON 24

SUBTOPIC :
 WRITING TIME USING AM AND PM

 CONTENT:The time between midnight and midday is written using am.
From midday to midnight we use pm

Example

Write in figures
Twenty minutes past tow o'clock in the morning. 6:20 a.m
Twenty minutes to seven o'clock in the evening. 6 :40pm
ACTIVITY
Exercise 9L page 175 (Mk New edition).

LESSON 25

SUBTOPIC :CHANGING DAYS TO HOURS
CONTENT:

Example

How many hours ar ther in 5 days?
1 day - 24 hours
5 days-2 4
X 5
120 in five days ther are 120 hours.

ACTIVITY :

Exericse 9l pag 175 (old Mk).

LESSON 26

SUBTOPIC: CHANGING HOURS TO DAYS

CONTENT:

Examples

1.Change 72 hours to days

1 day $=24$ hours
72 days
24 days
$=3$ days．
2．How many days are in 48 hours？

$$
\begin{aligned}
& 1 \text { day }=24 \text { hours } \\
& \frac{48 \text { days }}{24 \text { days }}=48 \text { hgours } \\
& =2 \text { days }
\end{aligned}
$$

ACTIVITY：
Exercise 9k page 175 （Mk old edition）

LESSON 27

SUBTOPIC：SUBTRACTING WEEKS AND DAY

CONTENT

Examples		
1	weeks	days
	3	2
-	1	5
	1	4
	$==========$	

$$
7+2=9 \text { days }
$$

3．Atim went to her aunt＇s place and spent 4 weeks 3 days there．She spent 2 weeks 6 days reading in a nearby school and the rest or the days she helped her aunt how long did she take helping her aunt？
WKS DAYS
$4 \quad 3 \quad 7+3=10$ days
2
$-\quad 2$
ニニニニニニニニニニニニニニニニ
She took 1 week 4 days helping her aunt．
ACTIVITY：Exercise 9t page 182 （Mk new edition）

LESSON 28

SUBTOPIC：ORDINARY YEAR AND LEAP YEARS CONTENT：
An ordinary year has 365 days．
A leap year has 366 days．
Identifying ordinary year and leap year．
We divide by 4 if we get a remainder then it is an ordinary year．If you don＇t get a remainder then it is a leap year．
Example
a） 1964
b） 1975

$\frac{16}{36}$
36
4
－ 4
0
1964 is a leap year

$$
\begin{aligned}
& \frac{16}{37} \\
& \frac{36}{15} \\
& -\frac{12}{3}
\end{aligned}
$$

LESSON 29

TOPICAL QUESTIONS（ TIME）

1．How many minutes are I hour？
2．Change 4 hours to minutes．
3．Write 180 minutes as hours
4．Work out
a） Hrs
3
Mins
40

+150

b）

WKs	Days
6	3
$+\quad 1$	5

3

5
$+1 \quad 5$

c） $\mathrm{Hrs} \quad \mathrm{Min}$

＝＝＝＝＝＝＝＝＝＝＝＝

＝ニニニニニニニニニニ＝
＝ニニニニニニニニニニー
c）Wks Days
73
-46

1975 is an ordinary year．

＝＝＝＝＝＝＝＝＝＝

5．Use a．m or p．m
a） 6 hours after midnight \qquad
b） 4 hours after noon \qquad ＿

6．Use＞，＜or＝
a） 2 weeks \qquad a fortnight．
b） 6 days \qquad a week．
c） 1 hour \qquad 30 minutes．

LESSON 30

SUBTOPIC : TOPIC LENGTH.

CONTENT

HINT: $1 \mathrm{~m} \quad=\quad 100 \mathrm{~cm}$
Example
Change 3 m to cm
$1 \mathrm{~m}=100 \mathrm{~cm}$
$3 \mathrm{~m}=3 \mathrm{~m} \times 1000 \mathrm{~cm}$
$=\quad 3 \mathrm{~m}=3 \mathrm{~m} \times 100 \mathrm{~cm}$ 1 m
$=(3 \times 100) \mathrm{cm}$
$=300 \mathrm{~cm}$
ACTIVITY : Exercise 10a page 186 (old Mk)

LESSON 31
SUBTOPIC : CHANGING CENTIMETERS TO METRES
CONTENT
Hint: $100 \mathrm{~cm}=1 \mathrm{~m}$

Example I
Chang
300m to metres $100 \mathrm{~cm}=1 \mathrm{~m}$ $300 \mathrm{~cm}=300$
3 m
====

Example II

Change 9800cm to m $100 \mathrm{~cm}=1 \mathrm{~m}$ $9800=9800$ 98m ====

ACTIVITY: Exercise 10 b No. 1 - 2 Mk bk 4 page 186.

LESSON 32

SUBTOPIC : EXPRESSING LENGTH IN METRES AND CENTIMETERS
CONTENT

Example

Change 120 centimeters to meters
$120 \mathrm{~cm}=(100+20) \mathrm{cm}$
$=\frac{100 \mathrm{~cm}}{100 \mathrm{~cm}}+20 \mathrm{~cm}$
$=1 \mathrm{~m} \quad 20 \mathrm{~cm} \quad$ Or $120 \mathrm{~cm}=1 \mathrm{~m} \quad 20 \mathrm{~cm}$
ACTIVITY : Exercise 10c page 187 (New Mk).
Powered by:-iToschool- | www.schoolporto.com | System developed by: lule 0752697211

LESSON 33

SUBTOPIC ：ADDITION OF METERS AND CENTIMETERS．

CONTENT．

EXAMPLES

a） $\mathrm{M} \quad \mathrm{CM}$
3
49
77
+2
ニニニニニニニニニニニ
b）$\quad \mathrm{M} \quad \mathrm{CM}$
240
$+310$
135
$6 \quad 85$

ニニニニニニニ
c）Atim slashed Hm 4 m 75 cm of a path．Munagira slashed 3 m 65 cm long．What total length of the path did they slash altogether？

M	CM
+	4
$+\quad 3$	75
8	4

They slashed 8 m 40 cm of the path altogether．
ACTIVITY：Exercise 10c page 187 （MK old edition）．

LESSON 34

SUBTOPIC ：SUBTRACTION OF METRES

CONTENT

Example
Subtraction $\quad 5 \mathrm{~m} 20 \mathrm{~cm}-2 \mathrm{~m} 65 \mathrm{~cm}$ ．

M	$C M$	$C M$
5	140	140
$-\quad 2$	65	$\underline{-65}$
2	75	$\underline{75}$

Example

Joshua had a string measuring 6 m 40 cm and he cut off 1 M 60 CM ．What is the length of the string that remained．

M	$C M$
6	140
-1	60
4	80

ACTIVITY
Exercise

LESSON ： 35

SUBTOPIC：MULTIPLICATION OF METER AND CENTIMETERS

CONTENT

Example I
Mary，Joseph and Karen each bought 3 m 45 cm of cloth what was the total length to the cloth bough．Each bought 3m 45cm
Therefore， 3 pupils bought
$\mathrm{M} \quad \mathrm{CM}$
$3 \quad 45$
$\mathrm{X} \quad 3$
$10 \quad 35$
＝＝＝＝＝＝＝＝＝＝＝＝
Or M CM
Mary bough 35
Joseph bought 345
Kareen bought 34
Altogether they 1035
Bough＝＝＝＝＝＝＝＝＝＝＝＝

Altogether they bought 10 m .35 cm ．

Example I

A family 7 people got 8 m 25 cm of the cloth each．What was the total length of cloth got by the whole family．
Each got
Therefore 7 people got
$8 \mathrm{~m} \quad 25 \mathrm{~cm}$
M CM
825

8	3
10	35

＝ニニニニニニニニニ＝
Altogether they bought 10 m
35 cm

Example I

A family of 7 people got 8 m 25 cm of the cloth each．What was the total length of cloth got by the whole family．
Each got $8 \mathrm{~m} \quad 25 \mathrm{~cm}$
Therefore 7 people got
M CM

825

X
$57 \quad 75$

＝＝＝＝＝＝＝
Altogether they got 57 m 75 cm ．
ACTIVITY：Exercise 10h Mk bk4 page 190.
LESSON 36

SUBTOPIC：DIVISION OF METERS AND CENTIMETERS

CONTENT ：（Remember to divide meters first）

Example

The piece of timber 2 boys are to share equally is 8 m 10 cm long．What length while each get？
8 M 10 cm shared by 2 boys
$8 \mathrm{~m} \mathrm{10cm} \div 2$
$8 \mathrm{~m} \div 2=4 \mathrm{~m}$
$10 \mathrm{~cm} \div 2=5 \mathrm{~cm}$
M Cm
$2 \longdiv { 4 } \begin{array} { l l } { 4 } & { 0 5 } \\ { 8 } & { 1 0 } \\ { 8 } & { 1 0 } \end{array}$

Each got 4 m 5 cm long
ACTIVITY：Exercise 10i page 191 （New MK）

LESSON 37

SUBTOPIC：CHANGING KILOMETRES TO METRES

CONTENT

Example

1．Change 5 km to m
$1 \mathrm{~km}=1000 \mathrm{~m}$
$5 \mathrm{~km}=1000 \times 5$
$=5,000 \mathrm{~m}$
2．Convert 3 km 60 m to metres．
Change the km to m then add the metres．
$1 \mathrm{~km}=1000 \mathrm{~m}$
$3 \mathrm{~km}=1000 \times 3$
$=3,000 \mathrm{~m}$

3000 m

$+\quad 650 \mathrm{~m}$

3650 m
＝ニニニニ＝ニニ＝＝

ACTIVITY ：Exercise 10h page 191 and exercise 10i page 192 （Mk old edition）

LESSON 38

SUBTOPIC ：MEASURING LONG DISTANCES

CONTENT：CHANGING METERS TO KILOMETERS

Example I

N．B： $1000 \mathrm{~m}=1 \mathrm{~km}$
Change 3000 m to km

Then 3000 m = 3000
$=3 \mathrm{~km}$

Example II

Change $20,000 \mathrm{~m}$ to km since $1000 \mathrm{~m}=1 \mathrm{~km}$
Then $20,000 \mathrm{~m}=20,000$
1000
$=\quad 20 \mathrm{~km}$.

ACTIVITY

Exercise 10j Mk bk 4 page 193.

LESSON: 39

SUBTOPIC : ADDITION OF KILOMETERS AND METERS.

CONTENT: Remember $1 \mathbf{k m}=1000 \mathrm{~m}$

Example : Add		KM	M
		15	880
	$+\quad 6$	750	
	22	630	

ACTIVITY: Exercise 10p page 197 (New MK).

LESSON 40

SUBTOPIC : SUBTRACTION OF KM AND METRES CONTENT Example

Subtract 2 km 400 cm from 7 km 100 cm

KM	M
7	100
$-\quad 2$	400
4	700

4km 700m

ACTIVITY

MK Primary Mathematics bk 4 (page 198 exercise 10q (Mk new edition).
LESSON 41
SUBTOPIC : MULTIPLICATION OF KM AND METRES
CONTENT:
Example

1. $K M \quad M$

8	350
X	3
25	050
$===========$	

2．$K M \quad M$
35320
X 3

105960
＝ニニニニニニニニ＝ニニ＝

ACTIVITY ：Exercise 10r page 200 （MK new edition）
LESSON 42

SUBTOPIC ：Finding perimeter

CONTENT：Definition．

（i）Perimeter is the total distance around a figure．
（ii）Finding perimeter by measuring lengths of sides of a figure．
We use a centimeter ruler to measure the lengths of a given figure．

Example：

Use a centimeter ruler to measure the lengths of the sides of the figure below．

Before measuring：
After measuring：
$P Q=\quad \mathrm{cm}$
$P Q=7 \mathrm{~cm}$
QR＝ \qquad cm
$\mathrm{QR}=2 \mathrm{~cm}$
RS＝ \qquad cm
$\mathrm{SP}=\ldots \mathrm{cm}$
$\mathrm{RS}=7 \mathrm{~cm}$

SP＝2cm
Add $P Q$ to $Q R$ to $R S$ to $S P$ to get the total distance around rectangle $P Q R S$ ．

$$
\begin{aligned}
& \therefore P Q+Q R+R S+S P \\
&=(7 \mathrm{~cm}+2 \mathrm{~cm})+(7 \mathrm{~cm}+2 \mathrm{~cm}) \\
&=9 \mathrm{~cm}+9 \mathrm{~cm} \\
&=18 \mathrm{~cm}
\end{aligned}
$$

The total distance around the figure is 18 cm
\therefore the perimeter is 18 cm ．
Activity：Exercise 11a

REMARKS：

LESSON 43

SUBTOPIC : Finding Perimeter.
 CONTENT : Finding perimeter of a rectangle:

Example:

$\mathrm{L}=5 \mathrm{~cm}$

Find the perimeter of the figure above.

$$
\begin{aligned}
P & =L+W+L+W \\
& =(5 \mathrm{~cm}+2 \mathrm{~cm})+(5 \mathrm{~cm}+2 \mathrm{~cm}) \\
& =7 \mathrm{~cm}+7 \mathrm{~cm} \\
& =14 \mathrm{~cm}
\end{aligned}
$$

ACTIVITY:
Exercise 11b page 200 (MK Old edition)
REMARKS

LESSON 44

SUBTOPIC : Finding length or width of a rectangle.
CONTENT : Finding length or width of a rectangle when perimeter is given.
Example:
Find the width of a rectangle if its length is 6 m and perimeter is 20 m .
Sketch

$$
\begin{aligned}
& P=L+w+L+W \\
& 20 m=6 m+w+6 m+w \\
& 20 m=6 m+6 m+w+w \\
& 20 m=12 m+2 w \\
& 20-12 m=12 m-12 m+2 w
\end{aligned}
$$

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

| 18 m | $=0$ | +2 w |
| ---: | :--- | ---: | :--- |
| 18 m | $=2 \mathrm{w}$ | |
| $\frac{18 \mathrm{~m}}{2}$ | $=$ | $\frac{2 \mathrm{w}}{2}$ |
| 9 m | $=$ | w |
| w | $=9 \mathrm{~m}$ | |
| \therefore width | $=9 \mathrm{~m}$ | |

ACTIVITY

1. Find the length of a rectangle below whose perimeter is 18 m and width is 4 m .

2. Work out the width of the figure below is its perimeter is 20 cm .

3. What is the length of the figure below if its width is 3 m and perimeter is 24 m ?

4. Work out the width of a rectangle whose length is 7 cm and perimeter is 22 cm . REMARKS:

LESSON 45

SUBTOPIC : DIVISION OF LONG DISTANCE CONTENT: DIVISION OF LONG DISTANCE

Divide 25 km 40 m by 8

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Powered by: -iToschool- | www.schoolporto.com | System developed by: Iule 0752697211

$1 \mathrm{~km} \quad x 8 \quad$| -8 |
| :---: |
| 24 |

$1 \mathrm{~km}=1000 \mathrm{~m} \quad 3 \times 8 \frac{-24}{0}$
Then 1000m
$+40 \mathrm{~m}$
$0 \times 8-0$
1040 m

ACTIVITY: Exercise 10r Mk bk 4 page 200.

LESSON 46:

SUBTOPIC : PERIMETER OF DIFFERENT FIGURES

CONTENT:

Hint : Perimeter is the distance around a figure

Example

Find the distance around the following figures
a)

$$
\begin{aligned}
& L+W+L+W \\
& 4+3+4+3 \\
& 7+7 \\
& =14 \mathrm{~cm}
\end{aligned}
$$

$$
P=A d d \text { the side around the figure }
$$

$$
(12+3+7+3+5+6)
$$

$$
=15+10+11
$$

$$
=36 \mathrm{~cm}
$$

$P=5+5+5$
$=5+4+4$
$=13 \mathrm{~cm}$
ACTIVITY : Exercise 116 page 201 (old edition)

LESSON 47

SUBTOPIC: PERIMETER OF REGULAR POLYGONS.

CONTENT- Definition:

Polygon:- A polygon is a closed figure joined by its line segments at its vertices.
Regular polygon:- A regular polygon is a polygon with all its sides and angles equal.
Examples of regular polygons include equilateral, square, regular pentagon e.t.c

Example

Find the perimeter of the figures below.

P	$=\mathrm{S}+\mathrm{S}+\mathrm{S}$
P	$=6+6+6$
P	$=18 \mathrm{~cm}$

(ii)

$$
\begin{array}{rlr}
\mathrm{P} & = & S+S+S+S \\
\mathrm{P} & =5+5+5+5 \\
& =\underline{20 \mathrm{~cm}}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{P} & =\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S} \\
\mathrm{P} & =4+4+4+4+4 \\
\mathrm{P} & =\quad \underline{c}
\end{array}
$$

ACTIVITY

1. Find the perimeter of each of the following:
(i)

(ii)

SUBTOPIC

THE

 SIDE OF SQUARE WHENFINDING
PERIMETER IS GIVEN.

CONTENT

A square is an example of regular polygon.
It has all its sides and angles equal.
Examples : if the perimeter of the square is 48 cm Find the length of each side.
Sketch
$\mathrm{P}=48 \mathrm{~cm}$:

$$
\begin{aligned}
& P=S+S+S+S \\
& P=4 s
\end{aligned}
$$

Powered by: -iToschool- \| www.schoolporto.com | System developed by: lule 0752697211

$$
\begin{aligned}
& 48 \mathrm{~cm}=4 \mathrm{~s} \\
& \frac{48}{4} \mathrm{~cm}=\frac{4 \mathrm{~s}}{4}
\end{aligned}
$$

\therefore The length of each side is 12 cm .
ACTIVITY: Exercise 11d page 205 (old edition MK)
LESSON 49

TOPIC : AREA OF RECTANGLES

CONTENT
Area is the amount of space covered by a flat surface. Are can be measured using small square units.

Example I

$A=12$ square units

$$
\begin{aligned}
& =6 \mathrm{dm} \\
\mathrm{~A} & =\mathrm{L} \mathrm{\times w} \\
\mathrm{~A} & =6 \mathrm{dm} \times 4 \mathrm{dm} \\
\mathrm{~A} & ={24 \mathrm{dm}^{2}}^{2}
\end{aligned}
$$

Example II

$$
\begin{array}{rll}
\mathrm{A} & = & \mathrm{L} \times \mathrm{W} \\
\mathrm{~A} & = & 5 \mathrm{~cm} \times 3 \mathrm{~cm} \\
\mathrm{~A} & = & 15 \mathrm{~cm} 2
\end{array}
$$

LESSON 50

$$
\begin{aligned}
& A=S \times S \\
& =5 \mathrm{~cm} \times 5 \mathrm{~cm} \\
& \mathbf{A}=\mathbf{2 5 \mathrm { cm } ^ { 2 }}
\end{aligned}
$$

$$
\begin{aligned}
& A=S \times S \\
& =7 \mathrm{~m} \times 7 \mathrm{~m} \\
& \mathbf{A}=49 \mathrm{~m}^{2}
\end{aligned}
$$

7 m

A square garden measures 9 cm .
Find its area.

Sketch

$9 \mathrm{~cm} \quad$A$\quad=\mathrm{S} \times \mathrm{S}$	
A	$=9 \mathrm{~cm} \times 9 \mathrm{~cm}$
	$=\underline{\mathrm{cm}^{2}}$

ACTIVITY: Exercise 11c page 208 (Mk new edition)

LESSON 51

SUBTOPIC: FINDING MISSING LENGTHS OF POLYGONS (FIGURES).

CONTENT:
Examples
(a) Find (i) P

Find $P 8 \mathrm{~cm}-5 \mathrm{~cm}$

$$
=3 \mathrm{~cm}
$$

$$
y=4 \mathrm{~cm}+6 \mathrm{~cm}=10 \mathrm{~cm}
$$

$y=4 c m+6 c m=10 c m$

ACTIVITY

Find (i) a
(ii) b

Find (i) t
(ii) m
(iii) k
(ii)

Find (i) c
(ii) d

LESSON 52

SUBTOPIC : AREA BY SEPARATING FIGURES

a) Find $x 2+4=6 \mathrm{~cm}$
b) Find the area

2 cm

$\mathrm{A}=1 \times \mathrm{W}$

$$
5 \times 2
$$

$$
10 \mathrm{~cm}^{2}
$$

Total
$10 \mathrm{~cm}^{2}$
$+18 \mathrm{~cm}^{2}$
=====

$$
\begin{gathered}
A=L \times w \\
6 \times 3 \\
18 \mathrm{~cm}^{2}
\end{gathered}
$$

ACTIVITY

(Mk old edition) bk 4 exercise 12b page 212 and 213.

LESSON 53

SUBTOPIC : FINDING THE LENGTH OR WIDTH OF A RECTANGLE WHEN AREA IS GIVEN.

CONTENT

Example.

The area of a rectangle is $24 \mathrm{~cm}^{2}$. Its length is 6 cm . find its width.
$\mathrm{A}=\mathrm{L} \times \mathrm{W}$
$24 \mathrm{~cm}^{2}=6 \mathrm{~cm} \times \mathrm{w}$
$24 \mathrm{~cm} \times \mathrm{cm}=6 \mathrm{~cm} \times \mathrm{w}$
$\frac{24 \mathrm{~cm} \times \mathrm{cm}}{6 \mathrm{~cm}}=\frac{\frac{6 \mathrm{~cm}}{1} \times \mathrm{w}}{\frac{\mathrm{w} m}{1}}$
$4 \times \mathrm{cm}=\mathrm{w}$
$4 \mathrm{~cm}=\mathrm{w}$
$w=4 \mathrm{~cm}$
\therefore its width is 4 cm
ACTIVITY : Exercise 11g Mk bk 4 page 209. (old edition).

SUBTOPIC: FINDING AREA OF A TRIANGLE:

CONTENT Finding area of a triangle using small squares.

Example:

(W) h

(L) b

$$
\begin{array}{ll}
L=6 \mathrm{~cm} & b=6 \mathrm{~cm} \\
W=3 \mathrm{~cm} & h=3 \mathrm{~cm}
\end{array}
$$

Area of the shaded part is half the area of a rectangle ($1 / 2$ of $18 \mathrm{~cm}^{2}$) that makes the area of a triangle ($9 \mathrm{~cm}^{2}$)
Then the area of a triangle equals the half of the area of a rectangle.
Then area of a triangle $=1 / 2 \times L \times W$

$$
\begin{aligned}
& =1 / 2 \times b \times h \\
& =1 / 2 \times \text { base } \times \text { height } \\
& =1 / 2 \times 6 \mathrm{~cm} \times 3 \mathrm{~cm} \\
& =\quad 9 \mathrm{~cm}^{2} .
\end{aligned}
$$

Activity Exercise 11h page 212 (MK old edition)
REMARKS.

LESSON 54

SUBTOPIC : AREA OF TRIANGLES

CONTENT

Example
Calculate the area of the triangle below.

$$
\begin{gathered}
\text { base }=6 \mathrm{~cm} \\
\text { Height }=5 \mathrm{~cm} \\
A=1 / 2 \times \text { base } \times \text { height } \\
A=1 / 2 \times b \times h \\
6 \mathrm{~cm} \quad A=1 / 2 \times 6 \mathrm{~cm} \times 5 \mathrm{~cm} \\
A=3 \mathrm{~cm} \times 5 \mathrm{~cm} \\
A=15 \mathrm{~cm}^{2}
\end{gathered}
$$

b)

$$
\begin{aligned}
A & =1 / 2 \times b \times h \\
& =1 / 2 \times 12 \times 7 \\
& =6 \times 7 \\
& =42 \mathrm{~cm}^{2}
\end{aligned}
$$

ACTIVITY: Exercise 11i page 213 (Old edition)

LESSON 55 TOPICAL QUESTIONS (LENGTH)
Complete the table

Metre	1	2		3	7
Cm	100		400		

b)

K m	1	4		5	9
M	1000		7000		

2. Work out

d) $\mathrm{Km} \quad \mathrm{M}$
$\begin{array}{r}9 \\ -\quad 894 \\ \hline\end{array}$
============
Find the distance around this figure.
9m

3. A rope is 53 m and 41 cm long. If a I cut off 29 m 65 cm . what length do I remain with?
4. Find the perimeter of these figures

b)

5. Find the area of these figures .
a)

b)

$3 m$

LESSON : 56
TOPIC : CAPACITY
SUBTOPIC : HALF AND QUARTER LITRES.

CONTENT :

NOTE:

1 litre $=2$ half litres
2 litres $=(2+2)$ half litres
3 litres = $(2+2+2)$ half litres

1 litre	$=$	4 quarter litres
2 litres	$=$	$(4+4)$ quarter litres
3 litres	$=$	$(4+4+4)$ quarter litres.

Example

How many $1 / 2$ litre bottle are in 1 litre container? 1 litre $=2$ half lire bottles.

Example II

How many $1 / 4$ litres are in 2 litres?
2 litres = ($4+4$) quarter litres.
2 litres = B quarter litres.
ACTIVITY
Exercise 13a MK bk 4 page 223

LESSON : 57

TOPIC : CAPACITY.
SUBTOPIC : Half and quarter litres.

CONTENT:

NOTE:
1 litre = 2 half litres 1 litre $=4$ quarter litres.
2 litres $=(2+2)$ half litres $\quad 2$ litres $=(4+4)$ quarter litres.
3 litres $=(2+2+2)$ half litres $\quad 3$ litres $=(4+4+4)$ quarter litres.

Example I

How many $1 / 2$ litre. Bottles are in 1 litre container?
1 litre $=2$ half litre bottles.

Example II

How many $1 / 4$ litres are in 2 litres?
2 litres = $(4+4)$ quarter litres
2 litres $=B$ quarter litres.
ACTIVITY
Exercise 13a bk 4 page 223
Remarks.

LESSON 58

SUBTOPIC : ADDITION OF LITRES AS HALF LITRES.
 CONTENT:

Examples

1. Add $1 \frac{1}{2}$ and $21 / 2$ litres

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
\begin{aligned}
& 11 / 2+21 / 2 \\
& 1+2=3 \\
& 1 / 2+1 / 2=\frac{1+1}{2}=\frac{2}{2}=1
\end{aligned}
$$

$\underline{3+1=4 \text { litres }}$
2. Mugumu had $21 / 2$ litres of milk and 4 litres of milk. How much milk does e have altogether?

$$
\begin{array}{ll}
& 21 / 2+4 \\
= & 2+4+1 / 2 \\
= & 6+1 / 2 \\
= & 61 / 2 \text { litres. }
\end{array}
$$

Activity : 12c page 224 (Mk old edition)
REMARKS.

LESSON : 59

SUBTOPIC: ADDITION OF LITRES AND MILLITRES

CONTENT:

Example		
Add	I	ml
	24	675
$+$	18	725
	43	400

2. A home uses 95 litres of water in the morning and 87 litres in the afternoon. How much water is used a day?

Morning

	9	5 litres
+	8	7 litres
1	8	2 litres
$=============$		

Activity : exercise 13 c (s 13c page 225 - 227) New Mk.

LESSON 60

TOPIC : WEIGHT
SUBTOPIC : Half and quarter kilograms.
CONTENT:

Hints :

1. $1 \mathrm{~kg}=1000 \mathrm{~g}$
2. $1 / 2 \mathrm{~kg}=500 \mathrm{~g}$
3. $1 / 4 \mathrm{~kg}=250 \mathrm{gm}$
4. $1 / 5 \mathrm{~kg}=200 \mathrm{gm}$
5. $1 / 2 \mathrm{~kg}+1 / 2 \mathrm{~kg}=1 \mathrm{~kg}$ therefore $500 \mathrm{~g}+500 \mathrm{gm}=1000 \mathrm{gm}$ 2 half $\mathrm{kg}=1 \mathrm{~kg}$
6. $1 / 4 \mathrm{~g}+1 / 4 \mathrm{~kg}+1 / 4 \mathrm{~kg}+1 / 4 \mathrm{~kg}=1 \mathrm{~kg}$ $250 \mathrm{~g}+250 \mathrm{~g}+250 \mathrm{~g}+250 \mathrm{~g}=1000 \mathrm{~g}$ 4 quarters $\mathrm{kg}=1 \mathrm{~kg}$.

Example

Say true or false
a) 1 kg is less than 700 gm
(c) 400 gm is less than $1 / 4 \mathrm{~kg}$
b) $3 / 4 \mathrm{~kg}$ is less than $1 / 2 \mathrm{~kg}$

ACTIVITY

Exercise 14a and 14b MK Bk 4 pages 228 and 229.
Remarks.

LESSON 61

SUBTOPIC : CHANGING KG TO GRAMMES

CONTENT:

Hint: $1 \mathrm{~kg}=1000 \mathrm{~g}$

Example

Change 2 kg to grams
$1 \mathrm{~kg}=1000 \mathrm{~g}$
$2 \mathrm{~kg}=(2 \mathrm{~kg} \times 1000) \mathrm{g}$
1 kg
$=2000 \mathrm{~g}$
ACTIVITY:
Exercise 14c page 230 (New MK)
Remarks.

LESSON 62

SUBTOPIC : CHANGING GRAMS TO KILOGRAMS

CONTENT : REMEMBER $\mathbf{1 0 0 0} \mathrm{g}=\mathbf{1 k g}$.

Example

Change 2000 g to kg
$=1000 \mathrm{~g}=1 \mathrm{~kg}$
$2000 \mathrm{~g}=20000 \times 1 \mathrm{~kg}$ 10000 g
$=\quad 2 \mathrm{~kg}$

Activity : exercise 14d page 230 (New MK)
Remarks.

LESSON 63

SUBTOPIC : ADDITION OF KG AND GRAMS
CONTENT :
Example Add Kg g
250
3150
$+\quad 3 \quad 400$
====ニ======
Remarks.

LESSON 64

SUBTOPIC : SUBTRACTION OF KG AND GRAMS

CONTENT:

Example

1. Subtract

Kg		g
75		64
-28	45	
47		19

2.

Kg	g
59	423
$-\quad 39$	651
19	772

3. What weight remains when 17 kg 68 g is removed from 37 kg 84 g ?

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Kg	g
37	84
$-\quad 17$	68
20	16

ーーニニニニニニニニーニーー
Therefore ：20kg
16 g remains．
ACTIVITY： 12 ＂S＂Page 236 and 12t page 237 Nos 1 － 10 （MK old edition）．
Remarks．

LESSON 65

SUBTOPIC ：MULTIPLICATION OF KILOGRAMS AND GRAMS CONTENT
Example I
Work out

Example II	
Kg	gm
4	310
x	3
12	930

ACTIVITY
Exercise 14j Mk bk 4 page 235.
Remarks．

LESSON 66

SUBTOPIC：VOLUME OF CUBES AND CUBOIDS

CONTENT

Examples
Find the volume of the figures below．
a）

b

Powered by：－IToschool－｜www．schoolporto．com｜System developed by：lule 0752697211

		2 cm
3 cm		
$\mathrm{V}=$	SxSxS	$\mathrm{V}=\mathrm{LXWX} \mathrm{h}$
＝	$3 \times 3 \times 3$	$=4 \times 2 \times 3$
＝	$27 \mathrm{~cm}^{3}$	$=8 \times 3$
（ $=24 \mathrm{~cm}^{3}$		

ACTIVITY：Exercise 129 page 220 （old MK ）
Remarks．

TROPICAL QUESTIONS（CAPACITY）（ S）WEIGHT ）

LESSON 67

1．How many quarter litres are there in 2 litres？
2．Work out：
a） $4 \frac{1}{2}$ litres $+3 \frac{1}{2}$ litres．
b）kidde had 18 litres of water． 11 litres were used．How many litres remained？
a）

b）

4．Change 8 kg to grams
5．Work out
a）

kg	g
13	150
X	5

b）$\quad \mathrm{kg}$
4
g
450
$\begin{array}{r}+3 \\ \hline\end{array}$
$3 \quad 749$
c）$\quad \mathrm{kg} \quad \mathrm{g}$

＝＝＝＝＝＝＝＝＝＝＝＝＝

＝ニニニニニニニーニーニニ＝

6．Charles gave $1 / 4 \mathrm{~kg}$ of meat to Sarah．How many grams did he give to Sarah？

PRIMARY THREE

EVALUATION ACTIVITY

1．Mr．Obbo was born in 1970．How old was Mr．Obbo in 1989？
2．Alice was born in 1988．How old was Alice in 1996？
2．Sir Apollo Kaggwa was started in 2000．How old is it now？

LESSON 68

Type of money
Notes and coins
le

Notes	Coins
1000 notes	$50 /=$ coin
50,000 note	$100 /=$ coin
5,000 note	
10,000 note	$200 /=$ coin
20,000 note	$500 /=$ coin

EVALUATION ACTIVITY

1．Name the two types of money we have in Uganda．
2．Identify any 3 notes we have in our country．
3．Name the features found on these coins
100／＝coin
200／＝coin 50／＝coin

LESSON 69

Addition of money
Example：sh
100
$+50$
150
＝ニ＝

Evaluation

（phase 1 activity）
1．David had sh 6750 ．He got 2870 from the younger sister．How much money did he have altogether？

2．Add：Sh 300
Shs $+3 \quad 5 \quad 0$
＝ニニニニニニニニニニニニニニニー

3． Sh
450
$\begin{array}{r} \\ +\quad 300 \\ \hline\end{array}$
4．Sh
1050
$\begin{array}{r}+\quad 650 \\ \hline\end{array}$
＝＝＝＝＝＝＝＝＝

LESSON 70

SUBTRACTION OF MONEY

Eg
sh
750

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Z	Sh	100
==================		

EVALUATION ACTIVITY

1. Lule had sh. 1000. He gave sh. 700 to Annet. How much did he remain with?

Expected answer
1000

- 700

300
2.

3. Sh

3	0	0
-1	5	0

===========

