# P.4 MTC INSTRUCTIONAL MATERIALS & LOWER CLASS WORK

| TOPIC                                    | INSTRUCTIONAL MATERIALS                 |
|------------------------------------------|-----------------------------------------|
| Set concept                              | - Charts                                |
|                                          | - Empty boxes                           |
|                                          | - Polythene bags                        |
|                                          | - Bottle tops                           |
|                                          | - Buckets                               |
|                                          | - Counters                              |
|                                          | - Stones                                |
|                                          | - Seeds                                 |
|                                          | - Fruits                                |
|                                          | - Pencils                               |
|                                          | - Mabled                                |
|                                          | - Coloured eggs                         |
|                                          | - Letter cards                          |
| Numeration system and place values       | - Abaci                                 |
|                                          | - Number cards                          |
|                                          | - Sticks in bundles i.e. hundreds,      |
|                                          | tens, ones                              |
|                                          | - Place values charts                   |
|                                          | - Charts showing roman numbers          |
|                                          | - Number line marked 9, 0.1, 0.2,       |
|                                          | - Stones                                |
|                                          | - Place value charts for decimals       |
|                                          | - Cut outs                              |
|                                          | - Flash cards with numbers              |
| Operation on numbers                     | - Stones                                |
|                                          | - Sticks                                |
|                                          | - Seeds                                 |
|                                          | - Place value charts                    |
|                                          | - Abaci                                 |
|                                          | - Containers for multiplication and     |
|                                          | division                                |
| Number facts and sequences               | - Charts                                |
|                                          | - Multiplication table                  |
|                                          | - Number cards                          |
|                                          | - Counters                              |
| Fractions                                | - Oranges                               |
|                                          | - Sugar canes                           |
|                                          | - Paper cut-outs                        |
|                                          | - Charts                                |
|                                          | - Scissors, knives, papers for learners |
|                                          | to cut                                  |
| Graphs and interpretation of information | - Wooden blocks                         |
|                                          | - Tins                                  |
|                                          | - Boxes of matches                      |
|                                          |                                         |
|                                          | - Squared papers                        |
|                                          | - Metre ruler                           |

| - Oranges - Balls - Pens - Books  Geometry - Wooden plane figures (square, rectangle, kite, rhombus, circle, parallelogram, triangle, pentagon, hexagon) - Wooden solid figures (cube, cubodid, tetrahedron, triangular pyramid, cylinder) - Manilar papers - Scissors - Glue - Chalkboard set - Mathematical set  Measures - Notes and coins - Pictures showing shopping activities - Classroom shop - Metre ruler - Wall clock - Calendar - Containers - Water |          |                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Balls - Pens - Books  Geometry  - Wooden plane figures (square, rectangle, kite, rhombus, circle, parallelogram, triangle, pentagon, hexagon) - Wooden solid figures (cube, cubodid, tetrahedron, triangular pyramid, cylinder) - Manilar papers - Scissors - Glue - Chalkboard set - Mathematical set  Measures  - Notes and coins - Pictures showing shopping activities - Classroom shop - Metre ruler - Wall clock - Calendar - Containers - Water         |          | - Graphs drawn on charts                                                                                                                                                                                              |
| - Pens - Books  Geometry  - Wooden plane figures (square, rectangle, kite, rhombus, circle, parallelogram, triangle, pentagon, hexagon) - Wooden solid figures (cube, cubodid, tetrahedron, triangular pyramid, cylinder) - Manilar papers - Scissors - Glue - Chalkboard set - Mathematical set  Measures  - Notes and coins - Pictures showing shopping activities - Classroom shop - Metre ruler - Wall clock - Calendar - Containers - Water                 |          |                                                                                                                                                                                                                       |
| Geometry  - Books  - Wooden plane figures (square, rectangle, kite, rhombus, circle, parallelogram, triangle, pentagon, hexagon)  - Wooden solid figures (cube, cubodid, tetrahedron, triangular pyramid, cylinder)  - Manilar papers  - Scissors  - Glue  - Chalkboard set  - Mathematical set  Measures  - Notes and coins  - Pictures showing shopping activities  - Classroom shop  - Metre ruler  - Wall clock  - Calendar  - Containers  - Water           |          |                                                                                                                                                                                                                       |
| Geometry  - Wooden plane figures (square, rectangle, kite, rhombus, circle, parallelogram, triangle, pentagon, hexagon) - Wooden solid figures (cube, cubodid, tetrahedron, triangular pyramid, cylinder) - Manilar papers - Scissors - Glue - Chalkboard set - Mathematical set  Measures  - Notes and coins - Pictures showing shopping activities - Classroom shop - Metre ruler - Wall clock - Calendar - Containers - Water                                 |          | - Pens                                                                                                                                                                                                                |
| rectangle, kite, rhombus, circle, parallelogram, triangle, pentagon, hexagon)  - Wooden solid figures (cube, cubodid, tetrahedron, triangular pyramid, cylinder)  - Manilar papers  - Scissors  - Glue  - Chalkboard set  - Mathematical set  Measures  - Notes and coins  - Pictures showing shopping activities  - Classroom shop  - Metre ruler  - Wall clock  - Calendar  - Containers  - Water                                                              |          | - Books                                                                                                                                                                                                               |
| Measures  - Notes and coins - Pictures showing shopping activities - Classroom shop - Metre ruler - Wall clock - Calendar - Containers - Water                                                                                                                                                                                                                                                                                                                   | Geometry | rectangle, kite, rhombus, circle, parallelogram, triangle, pentagon, hexagon)  - Wooden solid figures (cube, cubodid, tetrahedron, triangular pyramid, cylinder)  - Manilar papers - Scissors - Glue - Chalkboard set |
| - Pictures showing shopping activities - Classroom shop - Metre ruler - Wall clock - Calendar - Containers - Water                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                                                                                       |
| - Classroom shop - Metre ruler - Wall clock - Calendar - Containers - Water                                                                                                                                                                                                                                                                                                                                                                                      | Measures |                                                                                                                                                                                                                       |
| - Metre ruler - Wall clock - Calendar - Containers - Water                                                                                                                                                                                                                                                                                                                                                                                                       |          | 1                                                                                                                                                                                                                     |
| - Wall clock<br>- Calendar<br>- Containers<br>- Water                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                       |
| - Calendar<br>- Containers<br>- Water                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                       |
| - Containers<br>- Water                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                                                                                                       |
| - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | - Thermometer                                                                                                                                                                                                         |
| Algebra - Pencils                                                                                                                                                                                                                                                                                                                                                                                                                                                | Algebra  |                                                                                                                                                                                                                       |
| - Coins                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                                                                                                       |
| - Seeds                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                                                                                                       |
| - Books                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                                                                                                       |
| - Stones                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | - Stones                                                                                                                                                                                                              |
| - Sticks                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | - Sticks                                                                                                                                                                                                              |
| - charts                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | - charts                                                                                                                                                                                                              |

### **LOWER CLASS WORK**

# **SET CONCEPT**

- 1. What is a set?
- 2. Given that set  $A = \{a, b, c, d\}$ . How many members are in set A?
- 3. What is an empty set?
- 4. Match members of set P and Q correctly



5. Name the set below

6. Given that set A =  $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$  and set B =  $\begin{pmatrix} 0 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ 

Which set has more members?

# **NUMERATION SYSTEMS AND PLACE VALUES**

- 1. Show the following numbers on the abacus
  - a) 1245
  - b) 302

2. What numbers have been shown on the abacus below:





b)

- 3. Write the following in words.
  - a) 340

b) 4012

- 4. Complete;
  - a) 3241 = \_\_\_\_ Thousands \_\_\_\_ hundreds \_\_\_\_ tens \_\_\_\_ ones
  - b) 1023 = \_\_\_\_\_Thousands \_\_\_\_\_ hundreds \_\_\_\_\_ tens \_\_\_\_\_ ones
- 5. What is the place value of 3 in 7382?
- 6. Expand 3214 using values
- 7. What number has been expanded to give 300 + 20 + 7
- 8. What is the value of 2 in 1234?

# **OPERATION ON NUMBERS.**

- 1. Add: 2+3
- 2. Okello is 14 years. John is 16 years. What is their total age?
- 3. Subtract: 6 2

<u>- 2 5</u>

\_\_\_\_\_

4. Find the sum of 16 and 29.

- 5. What is the difference between 96 and 59?
- 6. Multiply: 1 4 6

7. Divide:

- 8. A bus carries 80 passengers in a day. How many passengers will it carry in a week?
- 9. A school got 243 points in sports and 90 points in cleanliness. How many points did it get altogether?
- 10. Subtract 20 from 100

# **NUMBER FACTS AND SEQUENCES.**

- 1. Write the missing numbers
  - a) 1, 2, 3, \_\_\_\_, 5, \_\_\_\_, 7
  - b) 1, 3, 5, \_\_\_\_, 11, \_\_\_\_
  - c) 16, 14, 12, \_\_\_\_, \_\_\_\_,
- 2. Use multiplication to show 6 + 6 + 6 + 6
- 3. Complete the magic square below.

| 9 |   | 7 |
|---|---|---|
|   | 6 | 8 |
| 5 |   | 3 |

4. Fill in the blank spaces. 3 x 4 = \_\_\_ + \_\_\_ = \_\_\_

# **FRACTIONS:**

1. Define the term fraction

2. Shade <sup>2</sup>/<sub>5</sub>

3. Name the shaded fraction.



4. How many halves are in two wholes?

5. Add:  $\frac{2}{9} + \frac{3}{9} + \frac{1}{9}$ 

6. Subtract: <u>4</u> - <u>1</u> 5 5

7. Which fraction is bigger,  $\frac{1}{2}$  or  $\frac{1}{3}$ ?

8. Write the fraction of the unshaded part.



9. What fraction is left after eating  $\frac{2}{3}$  of an orange?

10. Subtract: <u>3</u> from <u>5</u> 6 6

# **GRAPHS AND INTERPRETATION OF DATA / INFORMATION**

1. The pictograph below shows the number of balls sold in Mr. Mukasa's shop in a week. Study it carefully and answer questions that follow.

| Monday    |  |
|-----------|--|
| Tuesday   |  |
| Wednesday |  |

| Thursday |  |
|----------|--|
| Friday   |  |

Key: stands for 10 balls.

- a) How many balls were sold on Monday?
- b) On which day did he sell the smallest number of balls?
- c) In which two days did he sell the same number of balls?
- 2. The graph below shows the number of mangoes each child got.



- a) Who got the biggest number of mangoes?
- b) How many mangoes were given to Tim?
- c) Which two children got the same number of mangoes?
- d) How many mangoes were given out altogether?

# **GEOMETRY**

- 1. Draw the following shapes:
  - a) Circle
  - b) Rectangle
  - c) Square
  - d) Kite

- e) Oval
- f) Trapezium
- g) Cone
- h) Triangle
- 2. Name the shapes below.

a)



\_\_\_\_

b)



c)



# **MEASURES:**

Money

Study the shop list below and answer questions that follow.

| ITEM | PRICE          |
|------|----------------|
| Soap | Shs. 700 a bar |

| Book   | Shs. 300 a book  |
|--------|------------------|
| Pens   | Shs. 200 a pen   |
| Sugar  | Shs. 1000 per kg |
| Pencil | Sh. 100 a pencil |

- a) What is the cheapest item?
- b) Find the cost of four books
- c) Find the total cost of buying 1 bar of soap and a kg of sugar.

### TIME

- 1. Draw a clock face and show a half past three o'clock.
- 2. Draw a clock face showing a quarter to six o'clock.
- 3. Write the time shown on clock faces below

a)



b)



# **LENGTH AND AREA**

- 1. Change the following metres to centimetres
  - a) 3 metres
  - b) 6 metres
- 2. Find the perimeter of the figures below:

a)



b)



3. Find the area of the figures below.

a)



b)



### 5cm

# **CAPACITY:**

- 1. Add: 5 6 litres + <u>1</u> 7 litres
- 2. Subtract: 7 3 litres - 4 4 litres
- 3. Nambi collected 63 litres of milk from her farm. She sold 55 litres. How much milk did she remain with?
- 4. Change the following litres to centiliters.
  - a) 4 litres
  - b) 9 litres
- 5. How many one litre cups will fill a 14 litre jerrycan?
- 6. How many half litre tins will fill a 22 litre bucket?

# **WEIGHT**

- 1. Add: Kg g 4 120 + <u>3</u> 460
- Subtract: Kg g 9 310 - <u>4 260</u>

3. Which one is heavier?

4. Otim weighs 17kgs 750g. okello weighs 20kgs 900g. How many more kg has Okello than Otim?

# **ALGEBRA:**

- 1. Fill in the missing numbers.
- a) + 3 = 7
- b) -5=5
- c) 3 x = 12 d) 12 ÷ = 6
- 2. I had Shs. 20. My mother gave me more and now I have Shs. 46. How much money did my mother give me?
- 3. Father had some books, he gave me 5 books and remained with 7 books. How many books did he have at first?
- 4. Auma had some pencils. She shared them equally among 3 pupils and each got 9 pencils. How many pencils had she before?

# SIR APOLLO KAGGWA SCHOOLS

### TERM I 2009: LESSON NOTES FOR MATHEMATICS P.4

LESSON 1

TOPIC I: SET CONCEPTS

**SUB TOPIC: REVISION OF SETS** 

**CONTENT: Definition** 

A set is a collection of well defined objects.

An element is an object or a thing which belongs to a set.

(ii) Naming sets

- A set of tomatoes

- A set of bags etc
- A set of counting numbers
- A set of whole numbers
- A set of even numbers
- A set of odd numbers





) = in twos, <u>3</u> groups. 6 objects altogether.

Counting members in a set

Examples



set T has 6 members therefore n(T) = 6 members

therefore n(T) = 6 members

W = (a, b, c)

set W has 3 members

Therefore n(W) = 3 members.

(iv) Listing members of a set.

**ACTIVITY:** Exercise 1a page 1 Nos. 1 – 8 (MK MTC bk 4 old edition)

Remarks.

**LESSON 2: CONTENT:** Equivalent and non-equivalent sets.

Equivalent sets are sets with the same number of members which are not exactly the same.

Symbol ← →

# Example.

$$B = (x, y, z)$$
  $c = (4, 5, 6)$ 

Set B is equivalent to set C

Or 
$$B \leftarrow C$$

N.B: Equivalent sets are also called matching sets.

### Non - Equivalent sets

These are sets with different number of members that are not exactly the same.

## **Symbol**



# **Example**

$$X = (m, n, p)$$
  $Y = (m, w, y, x)$ 

Set x and y are non – equivalent sets.

Or 
$$x \leftarrow y$$

N.B: Non-equivalent sets are also called non – matching sets.

Activity: Exercise 1 (MK New edition) page 6.

Remarks.

## **LESSON 3:**

TOPIC: SET CONCEPTS SUB-TOTAL: TYPES OF SETS

CONTENT: EQUAL SETS AND EQUIVALENT SETS

# (i) Equal sets

Equal sets are sets which have the same number of elements which are exactly the same.

**Examples of Equal sets** 



Symbol for equal set =

# (ii) Equivalent sets.

Equivalent sets are sets with the same number of members which are not exactly the same.

# **Examples:**

A = (a, b, c, d) B = (1, 2, 3, 4)

Set A and B are equivalent sets.

Symbol for equivalent set

(iii) Comparing equal and equivalent sets.

# **Examples:**

If  $A = \{a, b, c, d, e\}$   $B = \{b, d, c, a, e\}$ Then, set A = B.



**ACTIVITY**: Exercise 1G page 8 (MK New Edition)

Remarks:

### **LESSON 4:**

**CONTENT: EMPTY SETS** 

Empty sets are sets which do not have members or a set whose members cannot be found. They are the sets without members. The empty set can also be called a null set or void set.

Symbol. Or (

# **Examples**



Set N is an empty set.

(b) A set of goats with 6 legs each is an empty set.

ACTIVITY: Exercise 1b and 1 C page 2 (Mk New edition)

Remarks.

# **LESSON 5:**

**CONTENT:** Even and Odd sets.

(i) Even sets.

These are sets whose members can all be paired.

**Example:** 

K

- Set K has 4 members.

- Members of set K have all been paired, therefore it is an even sets.

NB: An empty set is an even set.

(ii) Odd sets:

Odd sets are sets whose members can not all be paired.

Example:



Not all members of set M have been paired. Therefore it is an odd set.

**ACTIVITY:** Exercise 1(d) and 1 (e) page 3 and 5 (New Edition)

Remarks:

**LESSON 6:** 

**CONTENT: JOINT AND DISJOINT SETS** 

(i) Joint sets

Joint sets are sets with common embers. They are the sets with atleast one common member. Joint sets are also inter-secting sets

**Examples** 

P = (a, b, c, d, e) Q = (a, e, i, o, u)

Common members = (a, e)

Therefore, set P and Q are joint sets.

(ii) Disjoint sets are sets.

Disjoint sets are sets without common members.

Disjoint sets are also called Non – intersecting sets.

Examples;

D= $\{x, y, z, w\}$  K =  $\{7, 4, 5, 6\}$ 

Common members =.

Therefore set D and K are disjoint sets.

ACTIVITY. Exercise 1 page 10 (Mk Old edition)

Oxford Pri. MTC bk 4 page 10 – 11.

Remarks: LESSON 7.

SUBTOPIC: Intersection of sets.

**CONTENT: Definition** 

Intersection of sets is a set with common members.

- The symbol for intersection of sets.



# **Example:**

$$A = \{a, b, c, d, e\}$$
  $B = \{a, e, l, o, u\}$ 

(i) Find  $A \cap B$ .

$$A \cap B = \{a, e\}$$

(ii) How many members are in set A  $\cap$  B?

There are 2 members in set  $A \cap B$ 

- Shading the intersection set.



- listing common members from a venn diagram.

# Example:



(ii) Find  $Q \cap M$ 

$$Q \cap M = \{a, d\}$$

(iii) How many members are in set  $Q \cap M$  or  $n(Q \cap M)$ 

There are 2 members in set  $Q \cap M$ 

**ACTIVITY:** Exercise 1(g) and 1(h) page 12 (Old Edition)

## Remarks:

**LESSON 8:** 

**CONTENT: UNION OF SETS** 

Union of sets is a collection of all the members in the given sets.

Symbol; → U

**Examples** 

If P = (a, e, I, o, u) Q = (a, b, c, d, e)

What is P U Q?

Answer: PUQ = (a, e, I, o, u, b, c, d)

N.B: Common members are written once.

Shading the union sets

# **Examples**



N U M is shaded

Listing members of Union set from a venn diagram.



(i) Find  $P \cup Q = \{3, 4, 5, 1, 7, 2, 6\}$ .

(ii) How many members are in set  $P \cup Q$ ? 7 members.

**ACTIVITY: EXERCISE 1 PAGE 14 (MK NEW EDITION)** 

REMARKS.

### **LESSON 9:**

### CONTENT:

(a) Difference of sets.

Difference of sets is a set of members that exists in one set only. i.e. Set A – B means members of set A only.

**Example:** 

If  $P = \{r, s, t, v\}$   $Q = \{a, t, m, s\}$ 

 $P - Q = \{r, v\}$ (i)

 $Q - P = \{ a, m \}$ (ii)

(b) Shading the difference of sets i.e. →B – D





(c) Listing members of difference of sets from the venn diagram.

Example:

**P** 2 1 4 9 **Q** 3 5

(i)  $P - Q = \{2, 3\}$ 

(ii)  $Q - P = \{9\}$ 

(iii) How many members are in set P only?

There are 2 members in set P only.

**ACTIVITY:** If set R = {p , q , m , k} and T = { m , I , I , k} Find (i) R - T (ii) T - R (iii) R only (iv) T only

**REMARKS**:

### **LESSON 10:**

**CONTENT:** Venn diagrams.

(i) Shading and describing shaded regions.

# **Examples:**

Shade the following:

(a) A ∩ B **B** 





Describing shaded regions.

# Examples:

Describe the shaded regions.







**ACTIVITY:** Draw and shade these regions.

- (a) A but not B
- $(b)\,A\cup B$

- (c) Set B
- (d)B-A

Remarks.

### LESSON 11:

**CONTENT**: putting sets on Venn diagram

Examples: Set A = (1, 2, 3, 4, 5)

B = (0, 2, 4, 6, 8)

Represent the two sets on a venn diagram.



### **Discuss**

List members of

- (a) A only (1, 3, 5)
- (b) B A(0, 6, 8)
- (c) A n b (2, 4)
- (d)  $A \cup B = (1, 3, 5, 2, 4, 0, 6, 8)$
- e) B only =  $\{0,6,8\}$

# <u>ACTIVITY</u>

Set  $P = \{a, b, c, d, e\}$ 

Q={a, e, I, o, u}

Represent the two sets on the venn diagram below



Use the venn diagram to answer (i)  $P \cap Q$  (ii)  $P \cup Q$  (iii) P only (iv) set Q

 $\text{(v) P - Q} \qquad \qquad \text{(vi) Q - P} \qquad \qquad \text{(vii) members of Q but not p.}$ 

## **REMARKS**

# **LESSON 12**

SUB TOPIC Number of members in a set using symbols.

**CONTENT** Using symbols, the number of members is represented by letter **n** that appears outside the given set. i.e.

- n(A) means number of members in set A. (i)
- $n(A \cap B)$  means number of members in set  $A \cap B$ , etc. (ii)

Example:



- Find  $n(M \cap N)$ (i)  $M \cap N = \{2, 4\}$  $\therefore$  n(M  $\cap$  N) = 2 members.
- (ii) Find n(N)  $N = \{2, 4, 6, 3, 7\}$  $\therefore$  n(N) = 5 members.
- Work out:  $n(M \cup N)$ (iii)  $M \cup N$ ) = { 5, 1, 2, 4, 6, 3, 7}  $\therefore$  n(M  $\cup$  N) = 7 members.
- (iv) Work out: n(M - N) $M - N = \{ 5, 1 \}$  $\therefore$  n(M – N) = 2 members.

**ACTIVITY:** 1. Given the venn diagram.



(v) List of members of set P.

# (ii) $n(P \cap Q)$ (iii) n(P - Q)

(iv) n(Q)

### **REMARKS**

# LESSON 13 SUB TOPIC SUBSETS CONTENT

Find (i)  $P \cap Q$ 

- > A subset is a small set got from a big set.
- > An empty set is a subsetof any set
- > A set is a subset of itself (its called a super set). The suspenset is a subset similar to the given set.

- > The symbol for subset is
- ➤ The symbol for not a subset is

# Listing subsets

Set A = 
$$\{1, 2, 3\}$$
 { } { 1 } { 1, 2, 3} { 1, 2 } { 2 } { 2 } { 3 } { 3 } { 2, 3 } They are eight subsets.

**REMARKS** 

# **LESSON 14**

# **TOPICAL QUESTIONS FOR TOPIC I (SETS)**

- 1. A = {a, b, c, d,e,f} Find n(A)
- 2. Use EQUAL, EQUIVALENT OR DISJOINT





Sets A and B are \_\_\_\_\_\_ sets.

b) 
$$X = \{1, 2, 3, 4\}$$

3. Name these set symbols.



4.  $Q = \{ a, b, c, d, e \}$  $P = \{ a, e, I, o, u \}$ 

Draw and represent sets Q and P on a venn diagram

- a) Find:
  - i) QnP
- ii) n(Q UP)

5. Draw that



- a) List the elements o in set A
- b) List the elements of set B
- c) List the elements of A n B
- d) List the elements in A U B
- e) Find A B
- 6. Draw and shade the following regions
  - i) An B
- ii) XUY
- iii) P Q
- 7. Write a set of counting numbers less than 10.
- 8. Give a set of whole numbers less than 10.
- 9. Write a set of even numbers from 0 to 10
- 10. Give asset of odd numbers between 4 and 10.
- 11. If a {P, Q}, write all the subsets in set A.
- 12. If T {rat, hen}, give all the subsets in set T.
- 13. If  $M = \{a, b, c\}$ , write all the subsets in set M.
- 14. Give two other names for empty set.

### **TOPIC: NUMERATION SYSTEMS AND PLACE VALUES**

### LESSON 15

CONTENT (lower work)

- Representing numbers on the abacus.

**Example 1.** Represent 4 0 6 8 on the abacus below:



Example 2: Show each of the following on the abacus:

- a) 1305
- b) 5090

### **Finding place values:**

### **Example**

Find the place values of each digit in words



### In figures



### **ACTIVITY**

- MK primary Mathematics Book 4 (old edition) Ex 2b page 20.
- Oxford primary Mathematics Book 4 page 25 REMARKS

#### LESSON 16

**SUBTOPIC:** Values of numbers.

**CONTENT**: Value is the product of a digit and its place values.

### Example:

1. Find the value of 7 in the number 4702.



Value = 
$$D \times P.v$$

= 7 x Hundreds

 $= 7 \times 100$ 

= 700

**ACTIVITY**: Exercise 2C page 21 (New edition)

**REMARKS** 

#### LESSON 17

**SUB-TOPIC**: Expanding numbers using place values.

#### Example

Expand 3 7 4 6 using its place values

| TH   F | T | 0 |
|--------|---|---|
|--------|---|---|



$$(3 \times 1000) + (7 \times 100) + (4 \times 10) + (6 \times 1)$$

#### **ACTIVITY**

MK Primary Mathematics Book 4 page 24

Exercise 2f

REMARKS.

#### **LESSON 18**

SUB-TOPIC: EXPANDING NUMBERS USING VALUES

Example

Expand 74326 using its values



$$70,000 + 4000 + 300 + 20 + 6$$

#### **ACTIVITY**

MK Primary mathematics Book 4 Page 24

Exercise 2f

#### LESSON 19:

#### **SUB TOPIC: FIND EXPANDED NUMBER**

#### **CONTENT**

What number has been expanded to give

#### **ACTIVITY**

What number has been expanded.

- i) 100 + 20 + 2
- 2) 3000 + 400 + 90 + 2
- 3) (9x 10,000) + (6 x 100) + (3 x 10) + (3 x 1)
- 4) (7 x 1000) + (9x 100) + (4 x 1)
- 5. 5000 + 70 + 8

#### **REMARKS.**

#### **LESSON 20**

SUBTOPIC: WRITING FIGURES IN WORDS

### CONTENT

#### **EXAMPLE**

Write 43265 in words

| Thousand | Н | T | 0 |
|----------|---|---|---|
| 4 3      | 2 | 6 | 5 |

Forty three thousand, two hundred sixty five

#### **Example**

Write 6606 in words

| Thousands | Н | Т | 0 |
|-----------|---|---|---|
| 6         | 6 | 0 | 6 |

Six thousand, six hundred six.

### **ACTIVITY**

MK Primary Mathematics (old edition) page 21 – 22

Exercise 2d

#### **REMARKS**

LESSON 21

SUB TOPIC: WRITING WORDS IN FIGURES

#### CONTENT

Write twelve thousand eight hundred thirty two

#### **ACTIVITY**

MK Primary Mathematics (old edition) page 22

**EXERCISE 2e** 

REMARKS.

LESSON 22

SUB TOPIC: DECIMALS (CHANGING FRACTIONS INTO DECIMALS)

CONTENT: A DECIMAL IS PART OF A WHOLE WITH A DECIMAL POINT

EXAMPLE II

 $\frac{1}{10} = 0.1$   $\frac{7}{10} = 0.7$ 

EXAMPLE III EXAMPLE IV  $\underline{9}$  = 0.9  $\underline{6}$  = 0.6 10

0.9 10 90 10 60 90 60

### **ACTIVITY**

Exercise 2g nos 1 - 12 Mk book 4 page 25 Oxford primary maths bk4 page 28 Progressive primary maths bk 4 page 66-67.

#### **LESSON 23**

#### **SUB-TOPIC: WRITING DECIMALS IN WORDS**

#### CONTENT

Writing decimals in words

#### **EXAMPLE I**

Write 0.7 in words

a) 
$$0.7 = \frac{7}{10}$$

= Seven tenths.

b) 0. 7 = zero pint seven

#### **EXAMPLE II**

Write 0.9 in words

a) 
$$0.9 = 9$$

10

Nine tenths

b) 0.9 = zero point nine.

### **ACTIVITY**

Exercise 2i page 26 Mk new edition

#### **REMARKS**

**LESSON 24** 

**SUBTOPIC: WRITING DECIMALS IN FIGURES** 

#### **CONTENT**

#### **EXAMPLE I**

Write two tenth in figures.

$$=$$
  $\underline{2}$  or 0.2 or .2

#### Example II

Write Zero point four in figures

**ACTIVITY** 

Exercise 2h MK Bk 4 page 26

**REMARKS** 

**LESSON 25** 

**SUBTOPIC: WHOLE AND DECIMALS** 

**CONTENT: CHANGING MIXED FRACTIONS TO DECIMALS** 

**EXAMPLE I** 

**EXAMPLE II** 

$$23\frac{5}{10} = 23 + 0.5$$

**ACTIVITY** 

Exercise 2j Mk bk 4 page 27.

**REMARKS** 

**LESSON 26** 

SUBTOPIC: PLACE VALUES OF WHOLE AND DECIMALS

#### **CONTENT**

#### **EXAMPLE**

a) In words

Whole . decimals



### Wholes decimals



ACTIVITY: EXERCISE 2K MK BK 4 Page 28

**REMARKS:** 

### **LESSON 27**

**SUB-TOPIC: VALUES OF WHOLES AND DECIMAL NUMBERS** 

CONTENT

**EXAMPLE I** 

33.2



i.e the value of 2 is 0.2.

#### **ACTIVITY**

Exercise 2I page 29 Mk bk 4 new edition

**REMARKS** 

#### LESSON 28

SUB TOPIC: WRITING WHOLES AND DECIMALS IN WORDS.

#### CONTENT

**EXAMPLE I** 

Write 7. 5 in words

7.5 = 7 = seven

0.5 and five tenths

7.5 seven and five tenths.

EXAMPLE II

Write 107.2 in words

ACTIVITY: Exercise 2n page 31 (MK New Edition)

#### **REMARKS:**

SUBTOPIC: WRITING WHOLES AND DECIMALS IN FIGURES

Content
Example I
Writing in figures
Twenty five and three tenths.

Twenty five = 2 5
And three tenths = + 0.3

25.3

### Example II

Two hundred seventy five and one tenths

Two hundred = 200 O Seventy five = +75And one tenth = 0.1275.1

**ACTIVITY: EXERCISE 2M PAGE 30** 

MK bk 4 new edition

**REMARKS** 

LESSON: 29

SUB TOPIC: ROMAN NUMERALS (HINDU ARABIC ROMANS)

#### **CONTENT**

### TABLE A

| Hindu Arabic | Roman Numerals |
|--------------|----------------|
| 1            | 1              |
| 2            | ii             |
| 3            | iii            |
| 4            | iv             |
| 5            | v              |
| 6            | vi             |
| 7            | vii            |
| 8            | viii           |
| 9            | ix             |
|              |                |

### **TABLE B**

| Hindu Arabic | Roman Numerals |
|--------------|----------------|
| 10           | X              |
| 20           | Xx             |
| 30           | Xxx            |
| 40           | XI             |
| 50           | L              |
| 60           | Lx             |
| 70           | Lxx            |
| 80           | Lxxx           |

| 90  | Хс |  |
|-----|----|--|
| 100 | С  |  |
|     |    |  |

#### **Example**

1. Change 36 into Roman numerals

ACTIVITY: Exercise 2(0) page 34 Mk bk 4

New edition

**REMARKS** 

### **LESSON 30**

SUBTOPIC: CHANGING ROMAN NUMERALS TO THE HINDU - ARABIC

### **CONTENT:**

#### **EXAMPLE**

1. Write XIV in Hindu – Arabic

$$XIV = X + IV$$
  
= 10 + 4  
= 10  
 $\frac{+ 4}{1}$ 

2) 
$$XXXIX = XXX + IX$$
  
= 30 + 9  
= 3 0  
 $\frac{+ 9}{3 9}$ 

ACTIVITY: Exercise 2p page 34 Mk bk 4 new edition.

**REMARKS** 

#### LESSON 31

SUBTOPIC: WORD PROBLEMS ABOUT ROMAN AND HINDU ARABIC NUMERALS

CONTENT: - Word problems.

#### **EXAMPLES**

Namiya recorded her friends age in Hindu – Arabic numerals. Chang their age to Roman numerals.

a) Namweruka - 11years

11 = 10 + 1

ii) After that she recorded the age of her family members in Roman. Change their age to Hindu – Arabic numerals.

a) Herself - IX 
$$= 10 - 1$$
 
$$= 9 \text{ years}$$

ACTIVITY: Learners do a written exercise copied from the chalk board.

REMARKS.

LESSON 32

**SUBTOPIC:** Addition of Roman numerals

#### **Examples**

i) 
$$1x + V$$
 ii) =  $XX + VII$   
=  $9 + 5$  =  $20 + 7$   
=  $14$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10 + 4$  =  $10$ 

Subtraction of Roman numerals

#### **Examples**

a) XXXVI - XXII 14 = 10 + 4

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211 = 30 + 6 - 20 + 2X + IV36 - 22XIV 14 b) IX ٧ 4 IV = 9 5 4 = **ACTIVITY**: 1. XXXIV + XLV 2. XV + XXIX3. XCII + XL 4. XXV – V 5. XXXIV – XVI **REMARKS** LESSON 33 TOPICAL QUESTIONS ON NUMERATION SYSTEM AND PLACE VALUE. 1. What is place value of the underlined digits 77077 3062 b) c) 10,001 d) 28783 e) 13.2 2. Find the value of the underlined digits a) 573 b) 3615 c) 348<u>0</u>7 d) 20.8 3. Write in words a) 48349 b) 26.7 4. Write in words a) 48349 26.7 b) 5. Write the following in figures a) Twenty three thousand, nine hundred seventy one b) Two thousand eight c) Twelve and six tenths 6. Change 3 to a decimal fraction 10 7. Change to Roman numbers a) 19 23 b) 46 c) 28. Change to Hindu Arabic a) XLIX b) XXXI c) XIV **REMARKS:** LESSON 34

3. Word problems.

TOPIC:

**SUBTOPIC:** 

**OPERATION ON NUMBERS** 

Other words that call for addition, sum, total

Addition without regrouping (or without carrying), with regrouping or carrying and then word problems:

### **Examples**

$$(1)$$
 12 + 4 + 3

- (6) A boy counted 2689 cars on Monday and 4547 cars on Tuesday. How many cars did he count in the two days?
- (7) Find the sum of 14 and 6.

#### Solution.

**ACTIVITY:** Exercise 3a, 3b and 3c page 38 – 39 (MK old Edition).

### LESSON: 35

#### **SUBTOPIC: SUBTRACTION**

- 1. Subtraction with out re-grouping.
- 2. Subtraction with re-grouping.
- 3. Word problems.

Other words that call for subtraction, difference, remainder.

Subtraction without regrouping (borrowing), with regrouping and then word problems.

# **Example:**

(ii) 
$$8-2-3=(8-2)-3$$
  
 $6-3=3$ 

(vi) Mugumu had 2570/=. He bought a book for 343/=. What was his balance?

#### Solution

(vii) Work out the difference between 9 and 4

ACTIVITY: EXERCISE 3f page 45 (MK New Edition)

**LESSON 36** 

**SUBTOPIC**: Multiplication

**CONTENT**: Multiplying by multiples of 10.

Example:

### LESSON 37

**SUB TOPIC: MULTIPLICATION** 

Other words that calls for multiplication, product, of times.

CONTENT: MULTIPLYING BY ONE DIGIT

**Examples** 

(i) 
$$5 \times 2 = 10$$
  $00 + 00 + 00 + 00 = 10$ 

(ii) 
$$3 \times 4 = 12$$
  $00 + 00 + 00 = 12$ 

(vi) A worker is paid 6,960/= a day. How much will the worker get if he works for 7 days.

### Solution

1 day he gets 6,960/=

7 days he gets

6960

48,720

\_\_\_\_\_

∴ He gets 48,720/= in 7 days.

(vii) Find the product of 6 and 4.

ACTIVITY: Exercise 3g Nos 1 – 3 page 46 and 3h 1 – 5 page 47 (MK New Edition)

# **LESSON 38**

SUB TOPIC: MULTIPLICATION BY TWO DIGIT FIGURES

**CONTENT**: example

2. Peter picks 13 mangoes everyday. How many mangoes will he pick in a fortnight? Solution

Fortnight = 14 days

- 1 day he picks 1 3 mangoes
- 14 days he picks 1 3 mangoes

X <u>1 4</u> 5 2

ACTIVITY: EXERCISE 3K page 51 (MK New Edition)

**REMARKS** 

LESSON 39

SUB TOPIC : MULTIPLICATION AS REPEATED ADDITION

CONTENT

Example

a) 
$$4 \times 2 = 2 + 2 + 2 + 2 = 8$$

b) 
$$6 \times 3 = 3 + 3 + 3 + 3 + 3 + 3 = 18$$

**ACTIVITY** 

Use repeated addition to multiply

- a) 3 x 2
- b) 6 x 4
- c) 4 x 3
- d) 5 x 3
- e) 8 x 2

Complete

**REMARKS** 

LESSON 40

SUB TOPIC: DIVISION

CONTENT: DIVISION AS REPEATED SUBTRACTION

Example

1. 
$$12 \div 3$$
  
 $12-3=9$   
 $9-3=6$   
 $6-3=3$   
 $3-3=0$ 

 $\begin{array}{c|c}
12 & -3 \\
12 - 3 & = 9 \\
9 & -3 & = 6 \\
6 & -3 & = 3
\end{array}$ count the number of times you subtract 3 division from the dividend until you get "o" is the answer

 $\therefore$  12 ÷3 = 4 times

ACTIVITY: EXERCISE 3I page 53 (MK new edition)

### LESSON 41

SUB TOPIC: DIVISION WITH OUT REMAINDER

#### CONTENT

Example (a)  $8 \div 4 = 2$  (b)  $12 \div 3 = 4$ 

(c) 
$$2 | 2 | 2$$
  
 $1 \times 2 = -2 \downarrow$   
 $1 \times 2 = -2 = 11$ 

(d) 
$$3 | 9 | 6$$
  
 $3 \times 3 = -9 | 6$   
 $2 \times 3 | -6 | = 32$ 

(e) 
$$4 \begin{vmatrix} 1 & 2 & 0 & 1 \\ 4 & 8 & 0 & 4 \end{vmatrix}$$
 $\begin{vmatrix} 1 & x & 4 & -4 \\ 2 & x & 4 & 8 \end{vmatrix}$ 
 $\begin{vmatrix} -8 \\ 0 \\ 4 \\ -4 \end{vmatrix}$ 

(f) 
$$3 \begin{vmatrix} 0 & 4 & 0 & 4 \\ 1 & 2 & 1 & 2 \\ 0 & x & 3 & = \begin{vmatrix} -0 & 1 & 2 \\ -1 & 2 & 1 \end{vmatrix}$$

$$4 & x & 3 & = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{vmatrix}$$

$$0 & x & 3 & = \begin{vmatrix} -0 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix}$$

$$4 & x & 3 & = \begin{vmatrix} -1 & 2 & 1 \\ -1 & 2 & 1 \end{vmatrix}$$

$$4 & x & 3 & = \begin{vmatrix} -1 & 2 & 1 \\ -1 & 2 & 1 \end{vmatrix}$$

ACTIVITY: (a) EXERCISE 3m page 53 (Mk new edition)

(viii) 2424 by 4

(ix) 219 by

- (i)  $6 \div 2$  (iv)  $96 \div 3$  (ii)  $10 \div 5$  (v)  $602 \div 2$  (iii)  $18 \div 9$  (vi)  $966 \div 3$
- (iv)  $24 \div 2$
- (vii) 1515 by

- b) Divide
- Share 48 mangoes among 4 girls c)
- Share 106 sweets between 2 boys d)

### LESSON 42

SUBTOPIC **DIVISION WITH REMAINDERS** 

CONTENT Division with remainders but putting a zero to keep a place Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Example I Division

<u>172 rem 1</u>

### **ACTIVITY**

Divide the following

- (v) 625 by 3.
- (vi) 6247 by 2.
- (vii) 999 by 4.

### LESSON 43

**SUB TOPIC: DIVISION BY 10S** 

CONTENT: Division by 10s

Example I example ii  $650 \div 10$   $420 \div 10$   $= \frac{650}{10}$   $= \frac{420}{10}$  = 65 = 42

### **ACTIVITY**

EXERCISE 3 (0) NUMBERS 1-12

MK BK PAGE 54.

**REMARKS** 

SUBTOPIC: AVERAGE

CONTENT:

Example: Work out the average of 3, 0 and 6

Average =  $\underline{\text{sum of items}} = \underline{3 + 0 + 6} = \underline{9} = 3$ No. of items 3 3

**Activity:** 

- 1) Find the average of 2, 3 and 1
- 2) Work out the average of 4 and 6
- 3) Find the average of 2, 5, 5, 1 and 7
- 4) Work out the average of 9, 0 and 6.
- 5) Find the average of the first three even number.

#### LESSON: 44

SUB-TOPIC: WORD PROBLEMS

### **CONTENT:**

Share 246 books among 6 pupils. How many books does each pupil get? Example:

$$\begin{array}{c|cccc}
0 & 4 & 1 \\
6 & 2 & 4 & 6 \\
0 & x & 6 & -0 & 4 \\
2 & 4 & 6 & 4 \\
4 & x & 6 & -2 & 4 & 4 \\
1 & x & 6 & -1 & 6 & 4
\end{array}$$

$$1 & x & 6 & -1 & 6 & 4 \\
-1 & x & 6 & -1 & 6 & 4 \\
-1 & x & 6 & -1 & 6 & 4 \\
-1 & x & 6 & -1 & 6 & 4 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 6 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1 & x & 7 & -1 & 6 & -1 \\
-1$$

∴ Each pupil will get 41 books

2. There are 120 oranges in 2 bags. How many oranges are in each bag

$$\begin{array}{c|cccc}
0 & 6 & 0 \\
2 & 1 & 2 & 0 \\
0 & x & 2 & = & -0 \\
& & 1 & 2 \\
6 & x & 2 & = & 1 & 2 \\
& & - & - & 0 \\
0 & x & 2 & = & 0 & = 60
\end{array}$$

∴ Each bag contains 60 oranges.

**ACTIVITY:** Exercise 3p page 55 MK Bk4 new edition.

REMARKS

### LESSON 45

## **TOPICAL QUESTIONS (OPERATION ON NUMBERS)**

(b) 
$$2+6+8$$

(c) 
$$7 - 3$$

2. Add:

1403 + 549

3. Find the difference between 9 4 7 and 1 0 2 4

4. Work out:

f)

1. Divide:

- a)  $8 \div 2$
- b) 39 ÷ 3
- d) 2 / 26
- e) 3 <u>162</u>
- 2. Share 246 books among 6 pupils.
- 3. The cost of 1 pen is 250/=. Find the cost of 4 similar pens.
- 4. Subtract 99 from 108
- 5. Kapere planted 314 trees on Monday and 678 more on Tuesday. How many trees did he plant altogether.

#### LESSON 46

**TOPIC: TYPES OF NUMBERS** 

#### CONTENT : TYPES OF NUMBERS

### **Definitions:**

• Counting numbers: They are numbers which we use to count.

Examples of counting numbers include 1,2,3,4,5,6,7,8,...

- Whole numbers: They are number which begin with zero e.g. 0, 1, 2, 3, 4, 5
- Even numbers: They are numbers when divided by 2 leave no remainder e.g. 0,2,4,6,8,10, 12 .....
- Odd numbers: They are numbers when divided by 2 leave remainder 1 e.g 1, 3,
   5, 7, 9, 11, 13 .....

#### **ACTIVITY**

Exercise 40, 4b, 4c and 4d pages 58 – 60 New MK

#### REMARKS.

LESSON 47

SUBTOPIC: Number Sequence

#### **CONTENT: NUMBER SEQUENCE BY ADDING**

#### **Examples**

i) By adding one:



ii) By adding twos



iii) By adding one or two



iv) By adding counting numbers.



### **ACTIVITY**

Find the missing numbers in the following

- i) 1, 3, 5, 7, 9, \_\_\_\_
- ii) 5, 9, 12, 14, \_\_\_\_\_
- iii) 3, 6, 9, 12, 15, \_\_\_\_\_
- iv) 1, 3, 7, 13, \_\_\_\_\_
- v) 5, 10, 15, 20, 25, \_\_\_\_\_
- vi) 1, 2, 4, 7, 11, 16, \_\_\_\_\_
- vii) 8, 10, 13, 15, \_\_\_\_\_

**REMARKS** 

LESSON 48

SUBTOPIC: NUMBER SEQUENCES

CONTENT: Number sequence by subtracting

Examples







#### **ACTIVITY**

Find the missing numbers in the following

- I) 9, 7, 5, \_\_\_\_\_
- II) 18, 16, 12, \_\_\_\_\_\_6, 4
- III) 16, 13, 10, 7, \_\_\_\_
- IV) 22, 18, 16, 10,

REMARKS LESSON 49

**TOPIC: NUMBER PATTERNS AND SEQUENCE** 

SUB TOPIC: Multiples

A multiple is a product got by multiplying or counting number by the same number.

## Example:

List the multiples of

| $1 \times 4 = 4$ | 4 x 4 = 16        |
|------------------|-------------------|
| 2 x 4 =8         | 5 x 4= 20         |
| 3 x 4 =12        | $6 \times 4 = 24$ |

{4, 8, 12, 16, 20, 24, .....} are multiples of 4

ACTIVITY Exercise 4e page 60 MK bk4 (old edition)

REMARKS.

## **LESSON: 50**

SUB TOPIC: COMMON MULTIPLES AND L.C.M

### **CONTENT**

Examples

- 1. Find the first common multiples of 2 and 4
- 2.  $M_2 = \{2,4,6,8,10,12,14,16,18,...\}$
- 3. M<sub>4</sub> = {4, 8, 12, 16, 20, 24......} Common multiples = { 4, 8, 12}
- ∴ L.C.M = 4
- 2. Find the L.C.M of 4 and 5

$$M_4 = \{4, 8, 12, 16, 20, 24, 28\}$$

Common multiples = { 20}'

. L.C.M is 20

### **ACTIVITY**: find the L.C.M of

- a) Find the common multiples of 4 and 6 less than 30.
- b)
- i) 3 and 4
- ii) 4 and 6
- iii) 3 and 5
- iv) 4 and 8

LESSON 51

**SUBTOPIC:** Multiplying by 10, 100, 1000, 10000

**CONTENT:** This case, we simply place the number of zeros to the number.

<u>Example</u>

6 x 10 = 60 7 x 100= 700 8x 1000=8000 38 x 100 = 3800

ACTIVITY Exercise 4n Mk Primary mathematics page 69

REMARKS.

### **LESSON 52**

SUBTOPIC: MULTIPLYING BY MULTIPLES OF 10

**CONTENT** 

Example I

What is 7 x 30

 $7 \times 30 = ?$ 

 $30 = 3 \times 10$ 

So  $7 \times 30 = 7 \times 3 \times 10$ = 21 x 10 = 210.

Example II

What is 50 x 30

 $50 \times 30 = 5 \times 10 \times 3 \times 10$ =  $5 \times 3 \times 10 \times 10$ =  $15 \times 100$ = 1500

## **ACTIVITY**

Exercise 4(0) page 70 MK Primary maths bk 4 page 70.

**REMARKS** 

#### **LESSON 53**

**SUBTOPIC:** Dividing by multiples of 10

#### **CONTENT**

We divide by cancelling

Example: Divide 6000 by 30

$$\frac{6000}{30}$$
 = 200

Example; Share 2100 mangoes among 70 children 2100 ÷ 70

### **ACTIVITIES**

Exercise 4q page 71 Mk primary mathematics Book 4 page 71.

REMARKS.

### **LESSON: 54**

SUB TOPIC: Listing factors.

#### **CONTENT**

Factors are given pairs of numbers you multiply together to get a multiple/product. It is also a number that divides exactly into another number.

### Example I

1. Which two numbers do we multiply to get 12?

$$F_{12} = 1 \times 12 = 12$$
  
2 x 6 = 12  
3 x 4 = 12

$$F_s = 1, 2, 3, 4, 6, 12$$

2. List down all the factors of 16

$$F_{16} = 1 \times 6 = 16$$
  
 $2 \times 8 = 16$   
 $4 \times 4 = 16$   
 $1, 2, 4, 8, 16$ 

$$F_{16} = 1, 2, 4, 8, 16$$

3. How many factors has 6

$$F_6 = 1 \times 6$$
  
= 2 x 3  
 $F_6 = 1, 2, 3, 6$   
∴ 6 has 4 factors

4. Write the number of factors 18 has.

$$F_{18} = 1 \times 18$$
  
= 2 \times 9  
= 3 \times 6  
= 1, 2, 3, 5, 9, 18

∴ 18 has 6 factors

ACTIVITY: Exercise 4s page 73 Mk Bk4 and 4t (new edition).

### **LESSON 55**

SUBTOPIC: COMMON FACTORS AND G.C.F/H.C.F

**CONTENT: COMMON FACTORS** 

### Examples.

a)list down common factors of 4 and 6

Common factors = { 1, 2}

b) Find the Greatest Common Factors of 6 and 8

Common factors = {1, 2,}

G.C.F of 6 and 8 is 2

#### **ACTIVITY:**

List down common factors of

- 8 and 10
- 20 and 10
- 9 and 15
- 2. Find the G.C.F of
  - 15 and 20
  - 4 and 8
  - 16 and 12

**REMARKS** 

## **LESSON 56**

SUB-TOPIC: Divisibility tests for 2, 5 and 10

CONTENT : DIVISIBILITY TEST FOR 2

A number is divided by 2 if its last digit is an even number i.e 0, 2, 4, 6, 8

## **Divisibility test for 5**

A number is divisible by 5 if the last digit is either 0 or 5 for example 20 65 and so on.

### Divisibility test for 10

A number is divisible by 10 if its last digit is 0 for example 30, 70, 800 and so on.

### **ACTIVITY**

Selected numbers from Exercise 4t, 4u and 4v Mk Primary Mathematics (old edition) page 72 – 73

REMARKS.

### **LESSON 57**

**SUB-TOPIC: MAGIC SQUARES** 

**CONTENT:** Procedure: First find the sum of three given digits arranged in columns or rows or diagonals.

In this case, the number are in the diagonal 7, 4 and 1.



Find a

$$a + 12 - 12 = 12 - 12$$

$$a = 0$$

$$a = 0$$

$$b + 7 + 3 = 12$$

$$b + 10 - 10 = 12 - 10$$

Find C

$$C + 5 + 1 = 12$$

$$C + 6 - 6 = 12 - 6$$

$$d + 3 + 1 = 12$$

$$d + 4 - 4 = 12 - 4$$

$$d = 8$$

. . a = 0

### **ACTIVITY**

Fill in the missing numbers

| 7 | а | 5 |
|---|---|---|
| 2 | 4 | C |
| b | 8 | 8 |

| 2 | 9 | а |
|---|---|---|
| 7 | b | 3 |
| 6 | С | d |
| а | 8 | 3 |
| 6 | b | 2 |
| 5 | С | 7 |
|   |   |   |

8 1 6 a s b 4 c d

#### **LESSON 58**

TOPICAL QUESTIONS ON NUMBERS FACTS AND SEQUENCES.

- 1. List down the first 4 counting numbers
- 2. Find the sum of the first 3 even numbers.
- 3. Complete the following
- a) 1, 3, 5, 7, 9, \_\_\_\_\_
- b) 40, 38, 36, 34, \_\_\_\_\_
- 4. List down the first 7 multiples of 5.
- 5. Find the first three common multiples of 2 and 3
- 6. Find the L.C.M of 4 and 6.
- 7. Find the first three common factors of 12 and 18
- 8. Which of the following are divisible by 2? 5, 4, 8, 11, 430, 721
- 9. Which of the following is divisible by 5? 54, 5, 15, 72, 904, 800?
- 10. List down all factors of
  - a) 24

- b) 15
- 11. Find the H.C.F of
- a) 4 and 8
- b) 3 and 6
- 12. Find the missing numbers

|   | 8 | 1 | 6 |
|---|---|---|---|
|   | d | 5 | С |
| ſ | 4 | е | f |

#### LESSON 60.

TOPIC : FRACTIONS

SUBTOPIC : REVISION OF P.3 WORK

CONTENT : Definition

A fraction is part of a whole.

Naming fractions and writing in words.



1 a whole



½ a half



<sup>2</sup>/<sub>8</sub> two eighths.

Shade <sup>4</sup>/<sub>6</sub>

Shade <sup>2</sup>/<sub>3</sub> of

unilliani.

 $^{2}/_{3} \times 6 = 2 \times 2 = 4$ 

Shade  $\frac{1}{3}$  of

 $\frac{1}{3} \times 6 = 1 \times 2 = 2$ 

Types of fractions:- Proper / Simple / Common fractions.

- Improper fractions.

- Mixed fractions

ACTIVITY: EXERCISE 8q page 95 – 96 (MK bk 3)

### **LESSON 61**

Subtopic : Equivalent fractions.

Content : Finding equivalent fractions

We can use the knowledge of multiples: We can find equivalent fractions by multiplying numerators and denominators by the same number.

Example: find equivalent fractions for  $\frac{2}{3}$ 

$$\frac{2}{3} = \frac{2 \times 2}{3 \times 2} = \frac{4}{6}$$

$$\frac{2 \times 3}{2 \times 2} = \frac{6}{9} , \qquad \frac{2}{3}$$

$$\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \dots$$

$$\therefore \frac{2}{3} = \{ \underline{4}, \underline{6}, \underline{8}, \underline{10} \dots \}.$$

## **ACTIVITY**

- (i) List the first 5 equivalent fractions for
  - a)  $^{1}/_{3}$  ,
- b)  $^{2}/_{5}$  , c)  $^{1}/_{2}$  d)  $^{1}/_{4}$
- $^{4}/_{7}$

- (ii) Find the next equivalent fraction for:
  - a)  $\frac{1}{4}$ , b)  $\frac{2}{7}$ , c)  $\frac{3}{4}$

**REMARKS** 

### LESSON 62

TOPIC : FRACTIONS

SUBTOPIC: EQUIVALENT FRACTIONS

CONTENT : FINDING MISSING NUMERATORS AND DENOMINATORS

**Examples** 

i) 
$$\frac{1}{2} = 6$$

$$6 \div 2 = 3$$
  
 $1 \times 3 = 3$   
 $2 \times 3 = 6$ 

ii) 
$$\frac{3}{5} = \frac{20}{20}$$

$$\frac{4}{x} = \frac{12}{x} = \frac{12}{3}$$

iii) 
$$\frac{3}{5}$$
 =  $\frac{y}{20}$ 

$$20 5 = 4 
3 x 4 = 12 
5 x 4 20$$

$$\begin{array}{c|c} v) & \underline{ } & = \underline{8} \\ \hline 7 & 28 \\ 28 \div 7 & = 4 \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|}\hline & X & \underline{4} & = & \underline{8} \\ \hline & & 7 & x & 4 & 28 \\ \hline & & & x & 4 & = & 8 & (2 \times 4 = 8) \\ \hline \end{array}$$

### **ACTIVITY**

Exercise 5b Mk bkl 4 pages 77.

**REMARKS** 

# LESSON 63

Subtopic : Reducing fractions

Content:

Example

a. Reduce 6 to its lowest term

When there is no whole number which can exactly divide both the numerator and denominator, then the fraction is in its lowest term.

b) Write <u>4</u> in its lowest terms 8

$$\underline{4} = F_4 = \{1, 2, 4\}$$

$$F_8 = \{ 1, 2, 4, 8 \}$$

$$H.C.F = 4$$

$$\frac{4}{8}$$
  $\div$   $\frac{4}{4}$  =  $\frac{1}{2}$ 

ACTIVITY: Exercise 5d page 84 Mk bk 4 (new edition)

#### **REMARKS**

## **LESSON 64**

SUBTOPIC: Comparing fractions without using a number line.

CONTENT: COMPARING FRACTIONS WITHOUT USING A NUMBER LINE.

Example

### A. Which is greater?

ii) 
$$\frac{1}{2}$$
 or  $\frac{2}{3}$ 

$$\frac{1}{4} = \frac{2}{8}$$

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{6}{6}$$

$$\frac{2}{4} = \frac{3}{6} = \frac{4}{8}$$

$$^{2}/_{3}$$
 =  $\boxed{^{4}/_{6}}$  =  $\boxed{^{6}/_{9}}$ 

∴ ½ is greater

 $\frac{2}{3}$  is greater

# b) Arrange starting with the largest fraction

i) 
$$\frac{1}{2}$$
,  $\frac{2}{3}$  ,  $\frac{1}{6}$ 

ii) 
$$\frac{1}{3}$$
,  $\frac{1}{2}$   $\frac{1}{5}$ 

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8}, = \frac{5}{10} \dots$$

$$\frac{1}{3} = \frac{2}{6} = \frac{3}{9} = \frac{4}{12} = \frac{5}{15} = \frac{6}{18} = \frac{7}{21}$$

$$\frac{2}{3} = \frac{4}{6} = \frac{6}{9}$$

$$\frac{8}{24} = \frac{9}{27} = \frac{10}{30}$$

$$^{2}/3 = ^{4}/6 = ^{6}/9$$

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \frac{6}{12} = \frac{8}{14} = \frac{15}{30}$$

$$^{1}/_{6} = ^{2}/_{12}$$

$$^{10}/_{20} = ^{11}/_{22} = ^{12}/_{24} = ^{13}/_{26} = ^{14}/^{28} = ^{15}/_{30}$$

$$\frac{2}{3}$$
,  $\frac{3}{6}$   $\frac{1}{6}$   $\frac{1}{5} = \frac{2}{10} = \frac{3}{15} = \frac{4}{20} = \frac{5}{25}$ 

ACTIVITY: Exercise 5e nos. 1 – 15 Mk bk 4 page 81 REMARKS.
LESSON 65

Subtopic: Addition of fractions with different denominators

Content:

Rev: Workout: (a)  $\frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ 

b) Add: 
$$\underline{2} + \underline{5} = \underline{7}$$
  
 $7 \quad 7 \quad 7$ 

## **Examples**

Method 1: <u>Using equivalent fractions</u>.

Add:  $\frac{1}{2} + \frac{1}{3}$ 

Rename  $\frac{1}{3}$  and  $\frac{1}{3}$  so that their denominators are the same.

then 
$$\frac{1}{2} = {\frac{2}{4}, \frac{3}{6}, \frac{4}{8}, \dots}$$
  
 $\frac{1}{3} = {\frac{2}{6}, \frac{3}{9}, \frac{4}{12}, \dots}$   
 $\therefore \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6}$   
 $= \frac{3}{6} + \frac{2}{6}$   
 $= \frac{5}{6}$ 

Method 2: Using the L.C.M:

Work out:  $\frac{1}{2} + \frac{1}{3}$ 

Find the L.C.M of 2 and 3 to be the common denominator

 $M_2 = \{2, 4, 6, 8...\}$   $M_3 = \{3, 6, 9...\}$ 

Then  $\underline{x1} + \underline{x1} = (\underline{3} \times \underline{1}) + (\underline{2} \times \underline{1})$ 

$$\begin{array}{cccc}
\div 2 & \div 3 & 6 \\
& = & 3 + 2 \\
\hline
6 & & \\
\end{array}$$

- 1. I gave  $^2/_5$  of my land to John at first and added him  $^1/_5$  what fraction did he have altogether?
- 2. I ran  $^2/_3$  of my journey and walked  $^2/_5$ . What was the total fraction of the journey did I cover?

I ran - 
$$\frac{2}{5}$$
 =  $\frac{2}{3} + \frac{2}{5} = \frac{\frac{2}{3} + 15 + \frac{2}{5} \times 15}{15}$ 

I walked - 
$$\frac{2}{5}$$
 =  $\frac{2 \times 5 + 2 \times 3}{15}$  =  $\frac{10 + 6}{15}$ 

ACTIVITY: Exercise 5g and 5 h Page 87 – 88 Mk bk4 (New edition)

**REMARKS** 

### **LESSON 66**

SUBTOPIC : Subtraction of fractions with different denominators.

CONTENT: Revision examples: (i)  $\underline{2} - \underline{1}$  (ii)  $\underline{4} - \underline{1}$  (ii)  $\underline{7} - \underline{2}$  3 3 5 5 10 10

Revision:

Examples:

a)  $\frac{3}{4} - \frac{2}{3}$ 

Get equivalent fractions of each fraction.

b) Akello had 5/6 of a cake. She gave away ¼ to her best friend. What fraction remained?

# **Solution**

Get equivalent fractions for each in order of question.

 $\frac{5}{6}$  =  $\frac{5}{6}$   $\frac{10}{12}$   $\frac{15}{18}$   $\frac{20}{24}$   $\frac{25}{30}$  ......

$$\frac{1}{4} = \frac{1}{2} \quad \frac{2}{3} \quad \frac{4}{4} \quad \frac{5}{5} \quad \frac{6}{6} \quad \frac{7}{2}$$

Use the L.C.D fraction

$$\begin{array}{rcl}
 & \underline{10 - 3} & = & \underline{10 - 3} & = \underline{7} \\
 & \underline{12} & \underline{12} & \underline{12} & \underline{12}
 \end{array}$$

ACTIVITY: Exercise 5 o page 95 (Mk new edition)

Remarks.

# **LESSON 67**

Sub topic: Changing mixed numbers to improper fractions

## **Content:**

An improper fraction is a fraction whose denominator is smaller than the numerator e.g  $^{7}/_{2}$ 

A mixed number is a number with a whole number and a common fraction e.g 6  $^2/_5$  When changing a mixed number into an improper fraction we use.

 $\frac{\text{Denominator x whole number} + \text{Numerator}}{\text{Denominator}} \text{ or } \qquad (D \text{ X W}) + \text{N}$ 

# **Examples:**

Change  $6^{2}/_{5}$  into an improper fraction

$$6^{2}/_{5} = \frac{D \times W + N}{D}$$
  $D = 5$   
 $0 \times W = 6$   
 $0 \times (5 \times 6) + 2$   $0 \times 0 = 2$ 

**ACTIVITY** 

Exercise 5i Mk primary Mathematics (old edition) page 85.

# **LESSON 68**

Sub topic: Changing improper fractions to mixed numbers

Content

Example

Express  $\frac{8}{3}$  as a mixed number

 $8 \div 3$ 

2 rem 2

$$3 ext{ 8} \sqrt{3 ext{ x2} = \frac{6}{2}}$$
  
 $8/3 = 2^{2}/3 ext{ Ans.}$ 

## Example

Change <u>17</u> into a mixed number 5

$$\begin{array}{r}
 3r 2 \\
 5 \sqrt{17} & 3r 2 \\
 3 x 5 = -15 & 3^{2}/_{5}
 \end{array}$$

### **ACTIVITY**

Exercise 5K page 92 Mk primary Mathematics Book 4 (new edition)

### LESSON 69

SUBTOPIC: Addition of mixed fractions

CONTENT: Addition of mixed fractions with same denominators.

## Examples

1. Add: 
$$1 \frac{1}{3} + 4 \frac{1}{3}$$
  
=  $(1+4) + (\frac{1}{3} + \frac{1}{3})$   
=  $5 + (1+1)$   
3  
=  $5 + \frac{2}{3}$   
=  $5^{2}$ 

ii) 
$$2 \frac{1}{7} + 3 \frac{5}{7}$$
  
=  $(2 + 3) + (\frac{1}{7} + \frac{5}{7})$   
=  $5 + (\frac{1 + 5}{7})$   
=  $5 + \frac{6}{7}$   
=  $5 \frac{6}{7}$ 

lii) 
$$3 \frac{1}{4} + 2 \frac{3}{4}$$
  
 $(3+2) + (\frac{1}{4} + \frac{3}{4})$   
 $= 5 + (\frac{1}{4} + \frac{3}{4})$   
 $= 5 + 4$ 

### **ACTIVITY**

Exercise 5K page 86 Mk bk 4 page 86

Exercise 8 page 63 oxford primary maths bk 4 63.

### **LESSON 70**

Sub topic: Addition of mixed fractions.

Content: Addition of mixed fractions with different denominators.

Examples:

Add: 
$$2\frac{1}{2} + 3\frac{1}{4}$$
  
= $(2 + 3) + (\frac{1}{2} + \frac{1}{4})$   
=  $5 + \frac{(2x1) + (1x1)}{4}$   
=  $5 + \frac{3 + 1}{4}$   
=  $5 + \frac{3}{4}$   
=  $5\frac{3}{4}$ 

**Activity**:

1. 
$$2^{1}/_{3} + 1^{1}/_{5} =$$

2. 
$$4^{1}/_{6} + \frac{3}{4} =$$

2. 
$$4^{1}/_{6} + \frac{3}{4} =$$
  
3.  $3^{2}/_{5} + 1^{1}/_{3} =$ 

4. 
$$5^{1}/_{7} + 3^{1}/_{3} =$$

## LESSON 71

Finding the remaining fraction. Sub topic:

Content: **Examples:** 

Maishara ate 4/5 of an orange. What fraction remained? 1.

$$\begin{array}{r}
 1 - \frac{4}{5} \\
 = \frac{5}{5} - \frac{4}{5} \\
 = \frac{5 - 4}{5} \\
 = \frac{1}{5}
 \end{array}$$

 $\frac{1}{5}$  remained.

2. Mariam used 3/20 of the water in the Jerrycan for bathing. What fraction was left?

$$\begin{array}{rcl}
1 & -\frac{3}{20} \\
& = \frac{20}{20} - \frac{3}{20} \\
& = \frac{20 - 3}{20} \\
& = \frac{17}{20}
\end{array}$$

## Activity:

- 1. Juma painted  $\frac{7}{10}$  of his house on Monday, what fraction of his house has not been painted?
- 2.  $\frac{1}{3}$  of the people in a family are adults. What is the fraction for children?

### LESSON 72

Sub topic: Subtraction of mixed numbers

Content: Subtraction of mixed fractions with the same denominators.

Example

1. Subtract 
$$4^{3}/_{5} - 2^{1}/_{5}$$
  
=  $(4-2) + \frac{3}{_{5}} - \frac{1}{_{5}}$ )  
=  $2 + (3-1)$   
5  
=  $2 + \frac{2}{_{5}}$   
=  $2^{2}/_{5}$ 

1. Rebecca had a piece of material 10  $^2/_5$  metres long. She made a gomesi for Esther, her sister with  $7^1/_5$  metres. Ho w long was the cloth she was left with?

Soln : she had 
$$10^{2}/_{5}$$
 metres Used  $7^{1}/_{5}$  metres 
$$= 10^{2}/_{5} - 71/5$$

$$= (10-7) + (^{2}/_{5} - ^{1}/_{5})$$

$$= 3 + (2-1)$$

$$= 3 + ^{1}/_{5}$$

$$= 3^{1}/_{5}$$

Activity: Exercise 51 page 86 Mk Bk 4 (old edition)

### LESSON 73

Sub topic: Subtraction of mixed fractions.

Content : Addition of mixed fractions with different denominators

## Example:

$$84/5 - 3\% = (8 - 3) + (4/5 - \%)$$

$$= 5 + (2 \times 4) - (5 \times 1)$$

$$= 5 + 8 - 5$$

$$= 5 + \frac{8 - 5}{10}$$

$$= 5 + \frac{3}{10}$$

$$= 5^{3}/_{10}$$

# Activity:

Subtract:  $(1) 7\frac{3}{4} - 4^2/_3$ 

 $(2) 4^5/_6 - 1\frac{1}{2}$ 

 $(3) 1\% - 1^{1}/_{5}$ 

(4) 2½ - ¼

## LESSON 74

Sub topic: Fraction of a group

Content:

# Examples:

(a) What is ¾ of 12 goats?

¾ of 12

 $= \frac{3}{4} \times 12$ 

 $= 3 \times 3$ 

= 9 goats.

b) What is ½ of 24?

½ of 24

 $= \frac{1}{2} \times 24$ 

= 1 x 12

= 12

Activity: Exercise 5q Page 97 (MK New Edition)

### Remarks

### **LESSON 75**

Sub topic: Application of fractions.

Content: Examples:

There are 14 children in a taxi:  $\frac{2}{7}$  of them are boys.

a) How many boys are in the taxi?

$$\frac{2}{7}$$
 of 14  
=  $\frac{2}{7}$  x 14  
= 2 x 2

= 4 boys

b) How many girls are in the taxi?

c) What is the fraction of girls in the taxi?

$$\begin{array}{r}
 1 - \frac{2}{7} \\
 = \frac{7}{7} - \frac{2}{7} \\
 = \frac{7 - 2}{7} \\
 = \frac{5}{7}
 \end{array}$$

# Activity:

1. There are 15 pupils in P.4  $^{2}/_{5}$  of them area girls. The rest are boys.

- a) How many girls are in the class?
- b) How many boys are the class?
- c) What is the fraction of boys in the class?

2. There are 10 people in play.  $^3/_5$  of them are men.

The rest are women.

- a) What is the fraction of women in the play?
- b) How many women are in the play?
- c) How many men are in the play?

Remarks:

# **CONTENT:** A reciprocal is a number when multiplied by a given fraction gives 1.

# Example

Find the reciprocal of

a) 
$$\frac{5}{7} \frac{5}{5} \times \frac{7}{7} = \frac{35}{35} = 1$$

a) 
$$\frac{5}{7}$$
  $\frac{5}{5}$  x  $\frac{7}{7}$  =  $\frac{35}{35}$  = 1 b)  $\frac{3}{2}$   $\frac{3}{5}$  x  $\frac{2}{7}$  =  $\frac{6}{5}$  = 1  $\frac{3}{5}$   $\frac{3}{5}$ 

$$\therefore$$
 Reciprocal of  $\underline{3} = 1$ 

The reciprocal of  $\frac{5}{7}$  is  $\frac{7}{5}$ . The reciprocal of  $\frac{3}{2}$  is  $\frac{2}{3}$ 

## **ACTIVITY**

Find the reciprocal of:

a)  $^{3}/_{7}$ 

c)  $^{12}/_{8}$  d)  $^{8/}_{-}$ 

b)  $\frac{5}{11}$ 

d) 8/3

**LESSON: 76** 

Subtopic: Multiplication of fractions.

**Content:** When multiplying fractions, we use

Numerator x Numerator in short it is N x N Denominator x Denominator  $D \times D$ 

Examples:

1. 
$$\frac{1}{5} \times \frac{2}{3}$$

(ii) 
$$\frac{3}{4} \times \frac{8}{10}$$

N x N Here reduce denominators and numerators using D x D common factors.

$$= \frac{3 \times 1}{1 \times 5}$$
$$= \frac{3}{5}$$

Activity:

1. 
$$2 \times 1$$
 (4)  $3 \times 2$  4 5

(7) 
$$\frac{1}{3} \times \frac{1}{3}$$

| Powered by: -iToschool-  | L www.cchool | narta com I Si | ustam davala | nad hy | ر. ابرام 0752607211 |
|--------------------------|--------------|----------------|--------------|--------|---------------------|
| Powered by: -110scribbi- | www.scriooi  | porto.com   5  | ystem develo | peu by | 7. lule 0/5269/213  |

2.  $\underline{1} \times \underline{1}$  (5)  $\underline{1} \times \underline{1}$ 

(8) <u>1</u> x <u>1</u>

4

3. <u>2</u> x <u>10</u> 5 12

(6)  $4 \times 3$ 

2 2

# LESSON 77

# TOPICAL QUESTIONS ON FRACTIONS.

1. Add :

$$3/7 + 2/7 =$$

2. Shade  $\frac{3}{3}$  of



3. Find the first 3 equivalent fractions for

a) 
$$^{2}/_{5}$$

b) 
$$^{1}/_{6}$$

4. Find the missing number

5. Reduce 4/12 to the lowest terms.

6. Use >, <, or =

b) 
$$^{2}/_{3}$$
 -  $_{1}/_{6}$ 

c) 
$$\frac{2}{3}$$

$$^{6}/_{9}$$

7. Add the following

$$^{2}/_{3} + \frac{1}{4}$$

8. Subtract

$$_{1}/_{4}$$
 -  $^{1}/_{3}$ 

Find the reciprocal of the following: 9.

- <u>2</u> a)
- <u>3</u> b)
- <u>7</u> c)
- d)  $\frac{1}{2}$
- e)

10(a) Arrange the following fractions in ascending order

<u>1</u>, 5

Arrange the following fractions in ascending order. b)

<u>3</u>

and <u>5</u>

# SIR APOLLO KAGGWA SCHOOLS P.4 TERM II

**LESSON 1** 

SUBTOPIC: Decimal fractions

Content : Definition :

A decimal fraction is a part of a whole shown by a decimal point.

writing (decimals fractions) in words

Examples

a) Write 0.4 in words: Four tenths or zero point four.

b) Write 2.47 in words-Two and forty seven hundredths.

c) Write 23.14 in words- Twenty three and fourteen hundredths.

ACTIVITY: EXERCISE 5r page Nos 1-22 (MK New edition)

## **LESSON 2**

**SUBTOPIC**: Writing decimals in figures

**CONTENT**:

**Examples** 

a) Thirty three and four tenths.

b) Thirty three Four tenth

b) Twelve hundredths

c) Five hundred twenty and six tenths.

Five hundred twenty Six tenths

ACTIVITY: EXERCISE: 5(s) page 99 (MK New edition)

## **LESSON 3**

SUBTOPIC: Expressing fractions as decimals

## **CONTENT**

Examples

I. Express  $\underline{3}$  as a decimal 10  $\underline{3} = 10$  0 . 3 10 | 30 0 x 10 = -0 30 3 x 10 - 30 --  $\therefore \underline{3} = 0.3$ 

ii) Express  $\frac{24}{100}$  as a decimal.

Example III

$$\begin{array}{r}
 0.5 \\
 2 | 1 \\
 0 \times 2 \underline{-0} \\
 10 \\
 5 \times 2 - \underline{10} \\
 \therefore \frac{1}{2} = 0.5
\end{array}$$

 $\frac{1}{2} =$ 

ACTIVITY: Exercise 5r page 093 Mk old editions.

### **LESSON 4**

## **SUBTOPIC: EXPRESSING DECIMALS AS COMMON FRACTIONS**

Example a) change 0.3 into a common fraction.

$$0. \ 3 = \frac{3}{10}$$

c) 
$$0.24 = \frac{24}{100}$$

ACTIVITY: Exercise 5 U page 100 MK BK 4 (new edition)

## LESSON 5

**SUBTOPIC**: **Adding decimal fractions**.

Content : (i) Adding decimal fractions using the numberline.

Example (i) Add: 0.2 + 0.5



 $\therefore$  The sum of 0.2 and 0.5 on the number line is 0.7.

Example(ii) Add without using the number line.

0.2 + 0.5 (Arrange vertically according to place value).

# (iii) Word Problems

<u>Example</u> 1: I ate 0.2 of a cake in the morning and 0.7 of it in the evening. What decimal fraction did I eat altogether?

Example 2 : A pupils drank 3.9 litres of milk on Monday and 8.4 litres on Tuesday. How many litres of milk were drunk altogether?

ACTIVITY: Exercise 5x Pg 102 and Exercise 5z I Pg 104

Remarks

## LESSON 6

**SUBTOPIC: Adding decimal fractions:** 

**CONTENT:** Adding decimal fractions using the abacus.

Example 1 (A) Without carrying:

Add 1.3 + 2.6



# Example 2 (B) While carrying



ACTIVITY (A) Draw the abacus to show these additions below:

1. 3.2 + 4.6

 $4. \quad 0.4 + 5.3$ 

$$2. 1.1 + 2.7$$

$$3. 2.3 + 3.2$$

$$6. \quad 2.1 + 3.1$$

(B) Use the abacus to work out the following decimal fractions.

$$(1) 1.3 + 1.9$$

$$(3)$$
 2.8 + 3.2

$$(2) 1.7 + 1.6$$

$$(4)$$
 0.9 + 0.8

## Remarks

## **LESSON 7**

SUBTOPIC: Subtraction of decimal fractions.

**CONTENT** i. Using a number line

Example 0.5 - 0.3



$$0.5 - 0.3 = 0.2$$

# ii. <u>Using abacus method</u>

Example 3.7 - 1.4



 $\therefore 3.7 - 1.4 = 2.3$ 

iii. <u>Subtracting decimals without using number lines and abaci.</u> Examples:

2 . 2

#### Word problems. İ۷.

Examples:

1. Aisha had 7.2 metres of a string. She sold 3.5 metres. What length of the string did she remain with?

She had 7.2 metres

3.5 metres She sold

She remained with 3.7 metres

2. Musoke bought 10 litres of cooking oil.

He gave away 4.5 litres. How many litres of cooking oil did she remain with?

He bought 10.0 litres He gave away <u>-4. 5 litres</u> He remained with 5.5 litres

ACTIVITY: Exercise 5z5, 5z6, 5z8 and 5z9 (MK – New Edition pag 111)

**REMARKS:** 

# LESSON 8

SUBTOPIC: Writing decimals

CONTENT: (a) Writing decimals as mixed fractions.

# Examples

Write 1.5 as a common fraction. 1

A common fraction is a fraction which has a numeration and a denominator.

Therefore 1.5 = 1 + 
$$\frac{5}{10}$$
 =  $1\frac{5}{10}$ 

2. Write 
$$12.9 = 12 + 9 = 9$$
  
10 10

b) Writing mixed fractions as decimals.

## Examples:

i. Change  $1^{\frac{7}{1-2}}$  to decimal fraction.

ii. Change 2 4 to decimal.

$$\begin{array}{rcl}
2 & \frac{4}{10} & = & 2 & + & \frac{4}{10} \\
& = & 2 & + & 0.4 \\
& = & 2 & . & 0 \\
& & & \frac{+0}{2} & . & 4
\end{array}$$

ACTIVITY: Exercise 5W (MK - New Edition Page 101)

## LESSON: 9

**SUBTOPIC:** Ordering decimal fractions.

CONTENT:

- i. Arranging decimal fractions using a number line.
  - (a) Arranging from the smallest to the biggest (largest) Ascending order or increasing order.

Example:

Arrange the following decimals in ascending order.



The arrows are shorter with smaller decimal fractions e.g 0.2

The arrows are longer with bigger (longer) decimal fractions e.g 0.7

- ∴ Ascending order of the decimals is : 0.2 , 0.4 ,0.7
- ii. Arranging decimal fractions without using a number line.
  - (b) Arranging from the biggest (longest) to the smallest. Descending order or decreasing order.

### Example:

Arrange 0.4, 4, 0.04 beginning with the biggest.

$$0.4^{2nd} = \frac{4}{10}$$
,  $10$   
 $4^{1st} = \frac{4}{1}$   
 $0.043^{rd} = \frac{4}{100}$ 

The largest denominator is taken as the L.C.M

In this case the L.C.M = 100.

Multiply each fraction by 100.

$$0.4 = \frac{4}{10} \times 100$$

$$= 40$$

$$4 = \frac{4}{10} \times 100$$

$$1$$

$$= 400$$

$$0.04 = \frac{4}{100} \times 100$$

$$= 4$$

Comparing the products, the largest one shows the largest decimal and the smallest product shows the smallest decimal.

 $\mathrel{\dot{.}.}$  Descending order is 4 , 0.4 , 0.04

ACTIVITY: Exercise 5Y page 97 MK Bk (Old Edition)

REMARKS:

LESSON: 10

**TOPIC: GRAPHS AND TEMPERATURE** 

Subtopic: Pictographs and bar graphs

Definition:

Graph; A graph is a diagram representing information in an organized manner Examples of graphs

## Content

: (a) Pictographs are also called picture graphs. They are diagrams representing information using pictures.

To draw a pictograph, we use symbols. The symbols may represent one on more items.

The symbol and all the items it represents is called a scale.

### Example



Stands for 5 trees. How many trees are in



One tree stands for 5 trees 3 trees stand for (5 x 3) trees 3 trees stand for 15 trees.

0. The graph below show the number of balls picked by four sisters from a shop.

| <br>    |
|---------|
| Doreen  |
| Diana   |
| Daphine |
| Daizy   |



represents 8 balls

- a) Who picked the largest number of balls?
- b) Who picked the smallest number of balls?
- c) How many balls did Diana pick?
- d) If each costs shs. 1000, how much would Doreen pay?

ACTIVITY: Exercise 6b page 116 Mk bk 4 (New edition)

(b) Bar graphs:- They are diagrams representing information using bars.

The bars can be drawn vertically or horizontally.

The graph below shows the daily attendance of P.4 pupils for a week



- a) How many pupils were present on Thursday?
- b) On which day were the same number of pupils present?
- c) On which day was the biggest number of pupils present?
- d) How many pupils were present on Monday and Thursday?

ACTIVITY: Activity 6g page 113 Mk bk 4 (old edition)

#### LESSON 11

SUB TOPIC : Tally graphs

Tally graphs are diagrams that represent information using symbols called

tallies.

Content

: i. To draw tally graphs, we first collect information. We may draw tallies and use them to count and group things in fives.

ii. Tallies are used to count and group things or objects as follows:



iii. Writing tally marks using tallies.





Powered by: Hos hoof Adww. Choolporto.com | System developed by: lule 0752697211



iv. Making tally marks to represent these numbers.



ACTIVITY: Exercise 6a and 6b page 106 - 107 MK Old Edition

**REMARKS:** 

# LESSON 12

**SUBTOPIC:** Tallies and tables.

CONTENT: (a) Drawing tables.

Tallies and tables

# Examples

1. Pupils in P.4 were given in a Math test and scored the marks that were represented by the tallies as shown below:



Draw a table and represent the information shown by the given tallies.

| NAME        | Peter | Diana | Tom | Mary |
|-------------|-------|-------|-----|------|
| TALLY MARKS | 4     | 8     | 3   | 12   |

# (b) Making tallies

2. Show the given information on the table below using tallies.

| Days of a week | MON | TUE | WED | THUR | FRI |
|----------------|-----|-----|-----|------|-----|
| n(EGGS)        | 4   | 0   | 7   | 11   | 16  |

| DAYS OF A WEEK MON | NUMBER OF EGGS 4 | TALLIES |
|--------------------|------------------|---------|
| TUE                | 0                |         |
| WED                | 7                |         |
| THUR               | 11               |         |
| FRI                | 16               |         |

ACTIVITY: Exercise 6c page 108 MK Old Edition

**REMARKS:** 

## LESSON 13

SUBTOPIC : Tallies and bar graphs

Content : Tallies and bar graphs

# (a) Drawing bar graphs from tally graphs

## Examples

1. Four children in a group bought sweets from a shop.
Each one's sweets were recorded in tally from as shown below:

| NAMES  | TALLIES |
|--------|---------|
| Doreen |         |
| Sam    |         |
| Joan   |         |
| Paul   |         |

Draw a bar graph using the above tallies.

# A BAR GRAPH SHOWING SWEETS BOUGHT BY THE CHILDREN.



# b) Making tallies from bar graphs.

# Example:

ii. The bar graph below shows the number of flowers picked by five girls. Use it to draw a tally graph.

|              |           |   |    |        |        |        |    |   |   |   |    |    |    |    |    |    | ADAN      |     |
|--------------|-----------|---|----|--------|--------|--------|----|---|---|---|----|----|----|----|----|----|-----------|-----|
|              | 0         | 1 | 2  | 3      | 4      | 5      | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | GRAPH     |     |
| Fatuma       |           | m | mi |        |        |        |    |   |   |   |    |    |    |    |    |    | SHOWING   |     |
| Mary         | 111111111 | m | mm | 111111 | ,,,,,, | ,,,,,, | mm |   |   |   |    |    |    |    |    |    | FLOWERS   |     |
| ivial y      |           |   |    |        |        |        |    |   |   |   |    |    |    |    |    |    | PICKED BY |     |
| lane         |           |   |    |        |        |        |    |   |   |   |    |    |    |    |    |    | GIRLS     |     |
| Jane<br>Joan |           |   |    |        |        |        |    |   |   |   |    |    |    |    |    |    |           |     |
| Mary         |           |   |    |        | iiiii  |        |    |   |   |   |    |    |    |    |    |    |           | 111 |
|              |           |   |    | _      |        |        |    |   |   |   |    |    |    |    |    |    |           |     |

ΔΒΔΒ

# A TALLY GRAPH SHOWING FLOWERS PICKED BY GIRLS.

| NAMES  | TALLIES |
|--------|---------|
| Fatuma |         |
| Mary   |         |



ACTIVITY: Exercise 6d page 109 (Mk Old edition).

Remarks:

**LESSON 14** 

SUB TOPIC : Temperature

CONTENT : Definition

Temperature is the degree of hotness or coldness of an object.

Temperature is measured in <u>degrees</u> and it is written as <sup>o</sup>C or <sup>o</sup>F.

- (i) Reading temperature on the thermometers.
  - clinical thermometer.



The temperature is 67°C.

Maximum and minimum thermometer



Minimum \_\_\_\_ Maximum

From above (i) the Maximum temperature = 40°C

(ii) the Minimum temperature = 20°C

## (iii) Temperature graphs.

The graph below shows the temperature of four girls.



- a) Who had the highest temperature?Ajok had the highest temperature.
- b) What was the lowest temperature recorded? 20°C

ACTIVITY: Exercise 6(j), 6(K) and 6(i) page 116 – 119 (Mk Old edition).

Remarks:

#### Lesson 15:

#### TOPICAL QUESTIONS FOR GRAPHS AND INTERPRETATION OF TEMPERATURE

1. If stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils, how many pupils are in stands for 15 pupils.

2. A boy counted Red and Blue cars daily for a week and recorded the findings as shown below.

# THE GRAPH BELOW SHOWS THE NUMBER OF CARS COUNTED FROM MONDAY TO FRIDAY.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

|           | Red car | Blue car |
|-----------|---------|----------|
| MONDAY    |         |          |
| TUESDAY   |         |          |
| WEDNESDAY |         |          |
| THURSDAY  |         |          |
| FRIDAY    |         |          |

- a) On which day was the same number of cars counted?
- b) What was the least number of red cars counted in the week?
- c) How many red cares were counted on Wednesday?
- d) How many more red cares than blue cars were counted on Friday?

# THE GRAPH SHOWS MANGOES EATEN BY FIVE CHILDREN



- (a) How many oranges were eaten by Tom, Sam and Anna?
- (b) How many children ate the same number of mangoes?
- (c) How many mangoes did all the children eat?

## **LESSON 16**

= 6.

TOPIC: ALGEBRA

SUBTOPIC: <u>USING LETTERS FOR NUMBERS</u>

CONTENT: (i) Revision: find the missing numbers in the box.

= 9 - 3

= 10

Example 2:

- 4 = 6

Oral discussion: Find the missing numbers in the box:

Exercise (A)

Exercise (B)

1. + 2 = 9

1. - 3 = 5

2. + 3 = 8

2. - 6 = 4

3. + 6 = 11

3. - 7 = 10

(ii) Using the unknown:

The unknown is any letter of the English alphabet.

Find P:

Example 1. P + 5 = 11

P + 5 - 5 = 11 - 5

Find X:

Example 2: 6 + x = 15

6 + x = 15

**Subtract 5 from each side** 

P = 6 Ans.

Subtract 6 from each side

6 - 6 + x = 15 - 6

x = 9 Ans.

Example 3. Find m:

-3 = 7

m - 3 = 7

Example 4: find k:

k – 1 = 0

k - 1 = 0

Add 3 to each side

m - 3 + 3 = 7 + 3

m = 10 Ans.

Add 1 to each side

k - 1 + 1 = 0 + 1

k = 1 Ans.

ACTIVITY: Exercise 16c No. 1 -10 Pg 246 Mk (New Edition)
Exercise 16e no. 1 – 10 Pg 247 MK (New Edition)

REMARKS.

# LESSON 37

SUBTOPIC: Using letters for numbers.

(i) Adding letters for numbers.

Example Work out (a) p + p

P + p = 2p.

(b) 
$$4y + y$$
  
 $4y + y = 5y$ .

(d) Find the perimeter of the figure below.



$$P = s + s + s$$
  
 $p = 3y + 2y + y$   
 $= 6y$ .

ACTIVITY: Exercise 16f page 248 (Mk new edition) Exercise 16i page 250.

REMARKS.

# **LESSON 18**

**SUBTOPIC:** Using letters for numbers.

(ii) Subtracting letters for numbers.

Example: Work out

(a) 
$$2a - a$$
.  $2a - a = a$ .

(b) 
$$5y - 2y$$
  
 $5y - 2y = 3y$ 

(iii) Adding, and Subtracting letters for numbers.

$$4a - 2a = 2a$$
.

(b) 
$$2y - 3y + 4y$$
  
 $2y + 4y - 3y$   
 $6y - 3y = 3y$ .

#### LESSON 18

# SUBTOPIC: COLLECTING LIKE TERMS CONTENTS

Learners collect numbers with like terms

e.g 
$$x + y + x + 3y + x$$
  
 $(x + x + x) + 3y + y$   
 $3y + 4y$ 

ACTIVITY: Subtract the following:

- a) 7k + 2k
- b) 10p p
- c) 2y + 3y 4y
- d) k + 2k k
- e) p 3p + 4p

**REMARKS**:

# LESSON 19.

SUB TOPIC: collecting like terms

**CONTENT**: (i) Involving addition.

Examples: (a) Collecting like term x + y + x + 3y + x(x + x + x) + (3y + y)

ACTIVITY: Exercise 13 c page 242 Mk bk 4 (old edition)

REMARKS.

# LESSON 20

**SUBTOPIC**: Collecting like terms.

**CONTENT**: Involving subtraction and addition.

Example (a) work out 4k + n - k

$$4k - k + n$$

$$3k + n$$
.

ACTIVITY: Exercise 16k page 252, Mk primary mathematics (New Edition)

**REMARKS:** 

## LESSON 21

**SUBTOPIC**: Subtraction (1) with Addition and Subtraction.

**CONTENT**: To substitute is to replace.

Example Given that a = 4 b = 3 and c = 6

Find a) a + c

b) a - b c) a + b - c

4 + 6

4 - 3

4 + 3 - 6

10

1

7 - 6

ACTIVITY: Exercise 16n page 253, Mk primary mathematics (New Edition)

#### LESSON 22

SUBTOPIC: SUBSTITUTION (2) WITH MULTIPLICATION)

CONTENT Interprete 2y means 2 x y Xy means Xxy Abc means a x b x c

Example

Given that a = 4 b= 3 and c= 5

Find

1) 3a 3a= 3 x a

 $= 3 \times 4$ =12

ii) abc = a xb x c  $= 4 \times 3 \times 5$  iii)

ca = c x a

= 60

 $= 5 \times 4$ = 20

#### **ACTIVITY**

Exercise 16(0) Mk primary Mathematics page 254 bk 4 (New edition)

REMARKS.

#### LESSON 23

## SUBTOPIC: SUBSTITUTION III (MULTIPLICATION AND ADDITION/SUBTRACTING) CONTENT

| Example                         | example              |
|---------------------------------|----------------------|
| a = 4 and $b = 3$               | 2a + b               |
| find 4a + 2b                    | $= (2 \times a) + b$ |
| = (4x a) + (2 x b)              | $= (2 \times 4) + 3$ |
| $= (4 \times 4) + (2 \times 3)$ | = 8 + 3              |
| = 16 + 6                        | = <u>11</u>          |
| = 22                            | <del>_</del>         |

## Example

$$3a - 2b$$
  
=  $(3xa) - (2 x b)$   
=  $(3 x4) - (2 x 3)$   
=  $12 - 6$   
=  $6$ 

#### ACTIVITY

Given that a = 3, b = 4 and c = 5

Find

f) 
$$6a - 2b$$
  
g)  $3b - 2c$ 

g) 
$$3b - 2c$$

h) 
$$4b - c$$
  
i)  $2c - 2b$ 

**REMARKS** 

#### **LESSON 24**

SUB TOPIC: SUBSTITUTION (IV) (with division)

#### CONTENT

Example

Given that 
$$a = 3$$
 b= 4 and  $c = 6$ 

Find a) 
$$\underline{b}$$
 =  $b \div 2$   
2 =  $4 \div 2 = 2$ 

b) 
$$\frac{a+c}{3}$$
 =  $\frac{3+6}{3}$  =  $\frac{9}{3}$  =  $9 \div 3 = 3$ 

c) 
$$\frac{2a+2b}{2} = \frac{2 \times 3 + 2 \times 4}{2}$$
  
=  $\frac{6+8}{2}$ 

$$= \frac{14}{2} \quad 4 \div 2$$

#### **ACTIVITY**

Given that X = 4 y = 6 and Z = 8

Find

- a) <u>Z</u>
- c) <u>Z</u>

b) <u>2y + 3x</u> V d) <u>y + Z + X</u> v

REMARKS.

## **LESSON 25**

SUBTOPIC: EQUATIONS

CONTENT: ADDITION IN EQUATIONS (Lower work)

#### **Examples**

2). 
$$4 + y = 10$$
  
 $4 - 4 + y = 10 - 4$   
 $Y = 6$ 

ACTIVITY: Exercise 13g page 245 (Mk old edition).

# LESSON: 26

# SUBTOPIC: SOLVING FOR UNKNOWN (SUBTRACTION)

CONTENT(Lower class)

Learners will solve for unknowns in the equations.

e.g

b) 
$$y - 4 = 7$$

$$y - 4 + 4 = 7 + 4$$

$$y = 11$$

c) 5 - y = 2What number is subtracted from 5 to get 2 y = 5 - 2Y = 3

ACTIVITY: Exercise 13 h page 246 Mk bk4 (old edition)

REMARKS.

#### **LESSON 27**

#### SUBTOPIC: MULTIPLICATION IN ALGEBRA

Example

1) 
$$3 \times y = 12$$
  
 $3y = 12$   
 $3y = 26$   
 $13t = 26$   
 $13t = 26$   
 $13 = 26$   
 $13 = 26$   
 $13 = 26$   
 $13 = 26$   
 $13 = 26$   
 $13 = 26$ 

ACTIVITY: Exercise 13j page 247 (MK old Edition)

REMARKS.

#### LESSON 28

Subtopic: solving for unknown in division.

#### CONTENT:

Learners will find unknown in the equations involving division.

e. g a) 
$$x \div 3 = 2$$
 b)  $x = 2$  3  $x = 6$   $x = 2 \times 3$   $x = 6$ 

c) 
$$36 \div x = 9$$
 (What number can be divided by 36 to give 9)  $x = \frac{36}{9}$   $= 4$ 

ACTIVITY: Exercise 13k page 248 Mk bk 4 ( old edition)

# **LESSON 29**

SUBTOPIC: MIXED EQUATIONS (ADDITION)

CONTENT: Examples

i) 
$$2y + 3 = 15$$
  
 $2y + 3 - 3 = 15 - 3$   
 $2y = 12$   
 $2$   
 $2$   
 $Y = 6$ 

ii) 
$$4p + 1 = 17$$
  
 $4p + 1 - 1 = 17 - 1$   
 $4p = 16$   
 $4$   
 $p = 4$ 

**ACTIVITY** 

Solve these equations

a) 
$$5m + 2 = 12$$

c) 
$$3q + 3 = 21$$
  
f)  $2 + 4p = 10$ 

c) 4m + 5 = 25

d) 
$$2p + 2 = 20$$

e) 
$$6y + 1 = 13$$

REMARKS.

# LESSON 30

SUBTOPIC: MIXED EQUATIONS (SUBTRACTION)

# **CONTENT:**

Examples

I) 
$$4p - 2 = 10$$
  
 $4p - 2 + 2 = 10 + 2$   
 $4p = 12$   
 $4$   
 $P = 3$ 

ii) 
$$6p - 1 = 17$$
  
 $6p - 1 + 1 = 17 + 1$   
 $\underline{6p} = \underline{18}$   
 $6$   
 $P = 3$ 

**ACTIVITY**:

Solve these equations

a) 
$$2y-3 = 5$$
  
b)  $3m-2 = 13$ 

c) 
$$6p - 1 = 23$$
  
d)  $10y + 1 = 21$ 

REMARKS.

LESSON 31

## SUBTOPIC: FORMING AND SOLVING EQUATIONS

**CONTENT**: addition and subtraction of equations.

Examples.

1. Think of a number add three to it the answer is 14. What is the number? Let the No. be v.

$$Y + 3 = 14$$
  
 $Y + 3 - 3 = 14 - 3$   
 $Y = 11$ 

The number is 11

2. Think of a number subtract 3 from it my answer is 17. What is the number? Let the No. b n

$$N-3 = 17$$
  
 $N-3+3=17+3$   
 $N=20$   
The number is 20

ACTIVITY: Exercise 16t and 16u pages 257 and 258 (Mk new edition).

REMARKS.

# LESSON 32

SUBTOPIC: FORMING AND SOLVING EQUATIONS

CONTENT: MULTIPLICATION AND DIVISION OF EQUATIONS. Examples.

There are 4 groups in a class. Each group has the same number of pupils. Altogether there are 40 pupils. How many pupils are in each group?

Solution

Let the number of pupils in each group be by

$$4 \times y = 40$$
 $4y = 40$ 
 $4y = 40$ 
 $4$ 
 $Y = 10$ 

Therefore: 10 pupils are in each group.

2. A parent had some money and shared it among 6 children. Each child got sh. 500. How much money was it? Solution

Let the amount of money be C

$$C \div 6 = 500$$

$$C \div 6 \times 6 = 500 \times 6$$

$$C = 3,000/=$$

It was 3000/=

#### Or

6

$$6 \times C = 500 \times 6$$

6

ACTIVITY: Exercise 16 V NOS. 1 – 4 page 259.

Exercise 16w Nos. 1 – 4 page 260.

REMARKS.

#### LESSON 33:

#### **TOPICAL QUESTIONS FOR ALGEBRA**

- 1. Write in short y + y + y + y =
- 2. Simplify
  - a) N + M = 2n + 4M
  - b) 4t + 7y 3t.
- 3. Given that a = 2, b = 4, C = 6

#### Find;

- a) a + b c
- b) 2a + b
- c) 3a + 2c
- d) ac 2b
- e) 2c + 3b 2a
- 4. Work out
- a) x + 3 = 7

b) y - 4 = 10

c) 6y = 36

- d)  $w \div 6 = 2$
- 5. Solve for unknowns
- a) 5m + 2 = 12
- b) 2y 3 = 5

6. I think of a number when I add 3 to it the result is 7. What is the number?

## LESSON: 34

#### TOPIC: GEOMETRY

SUBTOPIC: Definitions: - Plane figures (shapes)

- (i) A plane shape is a shape with a flat surface. A closed figure or shape with many sides is called a Polygon.
- (ii) A triangle is a three sided figure.
- (iii) An equilateral triangle is a triangle with all of its sides equal.
- (iv) An Isosceles triangle is a triangle with two of its sides equal.
- (v) A circle is a round figure.

#### Content:

#### Examples

- Triangles (equilateral, isosceles, scalene, right angled).
- > Quadrilaterals (Rectangle, square, Rhombus, trapezium parallelogram, kite)
- > Circles are semicircle, Quadrant (A quarter a circle)
- Ovals

**ACTIVITY:** Draw and name the above shapes.

# **LESSON 35**

SUBTOPIC: Solid shapes

ContentExample s
Draw the following shapes

a) Cone

b) cylinder

b) Cube

d) Cuboid

- 2) Name the following solid shapes
  - a) Triangular pyramid



c) rectangular pyramid.

b) Triangular prism

d) Square pyramid

ACTIVITY : Draw and name the shapes.

#### LESSON 36

## **SUBTOPIC: Naming parts of solid shapes**

CONTENT Example

a) Cuboid;



a) A cuboid has 6 rectangular faces.8 vertices.12 edges.

A cuboid or a cube without a cover has 5 faces.

b) Cube;

A cube has 6 square faces.

8 vertices. 12 edges.

# **ACTIVITY**

Name and count the edge and vertices of faces

- Cuboid.
- > Cone.
- > Cylinder.
- > Rectangular pyramid.
- > Triangular pyramid.
- Square pyramid.
- > Triangular prism.

## LESSON 37

**SUBTOPIC: Making circles** 

Content: Making circles using hard paper, strings and big toes.

A circle



# i. **Using hard paper**:

Cut outs are made using razor blades, round objects and hard paper.

#### ii. Strings:

A string tied on a fixed object e.g pencil and a drawing paper is used.

#### iii. Big toes:

A toe is moved round a fixed point on the ground using a heel of a foot.

ACTIVITY: Making cuts outs and drawing circles using strings and toes.

Remarks:

#### LESSON 38

**SUBTOPIC: Making circles** 

Content: Making circles using a pair of compasses.

A circle

A pencil fixed in the pair of compasses is moved round a fixed point on a paper using a pair of compasses.

ACTIVITY: Drawing different sizes of circles using pairs of compasses.

Remarks:

## LESSON 39

SUBTOPIC: Lines of a circle.

Content: Lines of a circle.



## (b) Radius:

A radius is a line running from the centre to the edge of a circle.

#### (c) Diameter:

A diameter is a line running the edge of a circle to another passing through its centre.

#### (d) Chord:

A chord is a line joining any two points of a circle.

The chord may pass through the centre of a circle or not.

The longest chord of a circle is called a diameter.

# (e) circumference:

Circumference is the distance around a circle.

**ACTIVITY**: Exercise 7d

Remarks:

## LESSON 40

**SUBTOPIC:** Relationship between a radius and diameter.

Measuring using a ruler

## Content: (By measuring)

Learners with guide of the teacher will draw a circle of radius 3cm. They will extend the line to the edge of the circle. Measure the line, it will be 6cm. So we conclude that; diameter is twice the radius.

Or d = 2r Diameter = 2 x radius OR

Or d = r + r Diameter = radius + radius

ACTIVITY: Exercise 7g (MK primary mathematics Book 4 New Edition) page 139 – 140.

Remarks:

# LESSON 41

SUBTOPIC: Relationship between diameter and radius formula.

**Content**: Diameter when radius is given leaners will be guided by the teacher to use the formula (D = r + r)

1. Find the diameter of a circle whose radius is 3cm.

$$R = 3cm$$
, but  $D = R + R$ 

$$=$$
 3cm + 3cm

= 6cm

$$Or D = 2r$$

2. Calculate the diameter of a circle whose radius is 3.5cm.

$$R = 3.5 \text{cm} \text{ but } D = R + R$$
  
= 3.5 + 3.5  
= 7.0 cm

Or D = 
$$2r$$

$$=$$
 2 x 3.5

# **LESSON 42**

SUBTOPIC: FINDING RADIUS GIVEN THE DIAMETER CONTENT

In this case we use the formula

Example

Find the radius of a circle whose diameter is 12cm.

$$r = \underline{d}$$
 but  $d = 12cm$ 

$$r = \frac{12}{2} \quad \text{or} \quad 12 \div 2$$

$$r = 6cm$$

# **ACTIVITY**

Find the radius of circles with the following diameters

a) 10cm

g) 3.5cm

b) 18 cm

h) 5.8cm

- c) 8 cm
- d) 6cm
- e) 28cm
- f) 30cm

**REMARKS** 

# LESSON 43

SUBTOPIC: Part of a circle

**CONTENT**: Drawing parts of a circle.

i) Arc

An arc is a part of a curved line that makes a circle.



ii) <u>Circle</u>

A circle is a complete curve.



A semi-circle is a half a circle.



# iv) Quadrant

A quadrant is a quarter of a circle.



# v) Sector

A sector is a part of the area of a circle made by two radii.



The smaller sector is called a minor sector.

The bigger sector is called a major sector.

#### vi) Segment

A segment is a part of the area of a circle made by any chord which is not a diameter.



The smaller segment is called a minor segment.

The bigger segment is called a major segment.

**REMARKS** 

# LESSON 44

**SUBTOPIC**: Curves

**CONTENT**: Definition

A curve is a bent line. It is drawn without lifting a pencil.

# (ii) Types of curves



# b) Closed curves (intersecting curves)

A closed curve is a curve drawn from any given point but going to the starting point using intersecting lines. They do not make clear shapes. They are sometimes called intersecting curves.



c) Simple closed curves.

A simple closed curve is a curve drawn from any given point but going back to the starting point without using intersecting lines. They always form clear shapes.



#### **ACTIVITY**

Exercise 7 I page 136 MK Primary mathematics bk 4 (old edition)

## LESSON 45

**SUBTOPIC:** Drawing, Naming and measuring lines.

CONTENT: (a) (i) Lines.

A line has no end points.

(ii) Line segments.

E.P E.P

A line has two end points.



| 4 | Hexagon  | Six sides   |
|---|----------|-------------|
| 5 | Heptagon | Seven sides |
| 6 | Octagon  | Eight sides |
| 7 | Nonagon  | Nine sides  |
| 8 | Decagon  | Ten sides   |

ACTIVITY: Draw the following polygons:

- i) Triangle
- ii) Pentagon
- iii) Hexagon
- iv) Draw and name 4 examples of quadrilaterals.

REMARKS.

## LESSON 47

SUBTOPIC: ANGLES

**CONTENT: TYPES OF ANGLES** 

- (i) Right /complementary angle They add up to 90°.
- (ii) Straight/supplementary angles Add up to 180°.

Two complementary angles make one supplementary angle.

Learners write right angle or Not right angle or straight angle in the given task. Learners are guided to measure angles using a protractor by the teacher.

ACTIVITY: Learner do exercise 7j on page 138 (Mk old edition)

# **LESSON 48**

SUBTOPIC: MEASURING ANGLES USING A PROTRACTOR.

# **CONTENT**

Teacher explains to the learners the scales of a protractor.

- > Inner scale
- Outer scale
- ➤ Learners identify the line measuring or reading 90° and 180° on a protractors.

#### Hint

- When measuring angles we start from 0<sup>0</sup>.
- > The outer scale is used when measuring starts from the left hand side.
- > The inner scale is used when measuring starts from the right hand side.
- > Learners measure drawn angles on a piece of paper.

ACTIVITY: Exercise 7n page 141 Mk bk4 (old edition)

# LESSON 49

SUBTOPIC: Complementary angles / right angles

These are angle which add up to 90°

Examples:



$$y + 50^0 = 90^0$$
 (Right angle)

$$y + 50^{\circ} - 50^{\circ} = 90^{\circ} - 50^{\circ}$$

$$Y + 0 = 40^{\circ}$$

b) Find the size of angle K



$$K + K + 30^{\circ} = 90^{\circ}$$
 (Right angle)

$$2K + 30^{\circ} = 90^{\circ}$$

$$2K + 30^{\circ} - 30^{\circ} = 90^{\circ} - 30^{\circ}$$

$$2K + 0 = 60$$

$$\frac{2K}{2} = \frac{60}{2}$$

$$K = 30^{\circ}$$

m / 400

15º

c) Work out the size of angle m.

$$m + 40 + 15 = 900$$
 (Right angle)

$$m + 550 = 900$$

$$m + (55 - 55) = 90 - 55$$

$$m + 0 = 35^0$$

$$\mathbf{m} = 35^{0}$$

d) Find the complement of 20°.

Let the complete of 200 be X

$$X + 20^{\circ} = 90^{\circ}(Right angle)$$

$$X + 20^{\circ} - 20^{\circ} = 90^{\circ} - 20^{\circ}$$

$$X = 70^{\circ}$$

ACTIVITY: 1. Find the complement of the following angles.

- a)  $80^{\circ}$
- b)  $45^{\circ}$
- c)  $40^{\circ}$
- 2. Exercise 7 k page 139 Mk bk4 (old edition).

## LESSON 50

SUBTOPIC: Finding missing angles on a straight line [supplement of angles]

CONTENT : Definition of supplementary angles – angles which add up to 180°.

- Subtract the given angle

(a) Using diagrams

(b) Without using diagrams.

Examples: (a) Find the size of angle Y.



b) Find the size of angle n



 $n+n+60=180^{\circ}$  (straight angle)

 $2n + 60 = 180^{\circ}$ 

 $2n + 60 - 60 = 180 - 60^{\circ}$ 

2n = 0

 $2n = 120^{\circ}$ 

2 2

 $n = 60^{\circ}$ 

d) Find the supplement of 60. Let the supplement of 60 be K



 $K + 60^{\circ} = 180^{\circ}$  (straight angle)

 $K + (60^{\circ} - 60^{\circ}) = 180^{\circ} - 60^{\circ}$ 

 $K + 0 = 120^{\circ}$ 

 $\therefore K = 120^{\circ}$ 

c) find the value of r Illustration:



$$r + 120^{\circ} = 180^{\circ}$$
  
 $r + 120^{\circ} - 120^{\circ} = 180^{\circ} - 120^{\circ}$   
 $r + 0 = 60^{\circ}$   
 $r = 60^{\circ}$ 

ACTIVITY: Exercise 7p page 142 (MK old edition)

(ii) Find the supplementary angles of: (a) 130° (b) 143° (c) 150°

(d) 180°

REMARKS.

## LESSON 51

Subtopic: Finding missing angles in a triangle.

CONTENT: A triangle must have 3 angles and 3 sides.

Angle sum of interior angle of a triangle is 180°.

Example:

Find the value of angle X.

e.g. 1 x find x 
$$x + 72^{0} + 48^{0} = 180^{0}$$
 (interior angle sum)  $x + 120 = 180^{0}$   $X = 180^{0} - 120^{0}$   $X = 60^{0}$ 

Learners will try angles in a right angled triangle and find missing angles

$$X + 90^{\circ} + 35^{\circ} = 180^{\circ}$$
  
 $X + 125^{\circ} = 180^{\circ}$ 

$$X + 125^{\circ} - 125^{\circ} = 180^{\circ} - 125^{\circ}$$

$$X + 0 = 55$$

$$\therefore X = 55^{\circ}$$

3. Work out the value of P in degrees.



$$P + P + 40^{\circ} = 180^{\circ}$$
 (Interior angle sum)

$$2P + 40^{\circ} = 180^{\circ}$$

$$2P + 40^{\circ} - 40^{\circ} = 180^{\circ} - 40^{\circ}$$

$$2P + 0 = 120^{\circ}$$

$$\frac{2P}{2} = \frac{120}{2}$$

$$\therefore P = 60^{\circ}$$

ACTIVITY . Exercise 7r MK bk4 (old edition) page 144.

## LESSON 52

## **TOPICAL QUESTIONS ON GEOMETRY.**

- 1. Draw the following shapes
  - a) Trapezium

b) Kite

2. How many

Faces Edge

Vertices

3. Name the line below.



- a) AB
- b) AC \_\_\_\_
- c) DC
- b) Point B c) How many radii are shown on the circle>
- d) What name is given to the shown dot round the circle?
- e) If AB = 30cm . Find the length of AC.
- 4. Draw line segment of 5cm
- 5. What name is given to a 7 sided figure.
- 6. What is complement of 20°?
- 7. What is the supplement of 20°?
- 8. Find the angle M
- a) b) Work out angle y
- c) Work out angle P

m P 135°/ y □ 20°/







# SIR APOLLO KAGGWA SCHOOLS P.4 TERM III LESSON PLAN

# LESSON 1

SUBTOPIC: RECOGNITION OF MONEY.

#### CONTENTS

| COINS | BANK NOTES |
|-------|------------|
| 50 /= | 1000/=     |
| 100/= | 5000/=     |
| 200/= | 10,000/=   |
| 500/= | 20,000=    |
|       | 50,000/=   |

ACTIVITY: Exercise 8a page 148 (MK new edition). REMARKS.

#### LESSON 2

**SUBTOPIC: CHANGING SHILLINGS TO CENTS** 

#### CONTENT:

# Examples

- 1. Change sh. 3 to cents 1 shillings = 100cts 3 shillings = 100 x 3 = 300cts.
- 2. Change shs. 250 to cents 1 sh = 100cts 250 sh = 100 x 250 = 25,000 cts

Change cents to shillings

1) Change 300ts to shillings

1 Sh = 100cts

(300) sh = 300cts

(100)

= 3 shillings.

ACTIVITY: Exercise 8a page 147 and 8b page 148 (Mk old edition)

REMARKS.

#### **LESSON 3**

**SUBTOPIC: ADDITION OF MONEY** 

#### **CONTENTS**

Examples

**ACTIVITY** 

Exercise 8b MK 4 page 149 (New edition) exercise 8c Mk bk 4 page 148 (new edition)

REMARKS.

#### **LESSON 4**

SUBTOPIC: SUBTRACTION OF MONEY.

## CONTENT.

#### Example.

How much change will you get if you have 1000/= and you spend 350/=

Example

| =/\dp.0  |         |       |
|----------|---------|-------|
| Subtract | Sh      | Cts   |
|          | 4 3 9   | 3 5   |
|          | -250    | 4 0   |
|          | 188     | 9 5   |
|          | ======= | ===== |

#### **ACTIVITY:**

Exercise 8d, e and f MK primary mathematics (old edition) 149 and 150.

#### LESSON 5

SUBTOPIC: MULTIPLICATION OF MONEY. CONTENT: MULTIPLICATION OF MONEY.

Example I Example II

Multiply : sh 896 The cost of 1 loaf of bread

 $\frac{\text{x } 6}{5376}$  is sh. 1800. Find the cost of 3 loaves

Sh. 1800 x 3

Sh. 5400

**ACTIVITY** 

Exercise 8d Mk bk 4 page 157.

REMARKS.

#### **LESSON 6**

**SUBTOPIC: Money** 

**CONTENT:** Direct proportion

Definition:

Direct proportion means the relationship that shows how given quantities

increase or decrease with their values.

#### Examples

i. 1 book costs sh. 200. What is the cost of 4 similar books?

| <u>Books</u> | <u>Shillings</u> |
|--------------|------------------|
| 1 book costs | sh. 200          |
| 4 books cost | sh. 200          |
|              | <u>X 4</u>       |
|              | <u>Sh. 800</u>   |

ii. 2 pens cost sh. 600. What is the cost of 1 similar pen?

Pens
 Shillings

 2 pens cost
 sh. 600
 sh 300

 1 pen costs
 sh. 600
 2 600

 2
 
$$3x2 = 6$$

 =sh. 300
  $0x2 = -0$ 

 0x2 = -0
 = sh. 300

4 mangoes cost sh. 800. What is the cost of 6 similar mangoes?

Mangoes Shillings
4 mangoes cost sh.800 sh. 200
But 1 mango costs sh.800 4 800
$$4 2x4 = -8 \downarrow \downarrow 0$$

$$= sh. 200 0x4 - 0 \downarrow 0$$

$$0x4 = 0 = sh.200$$

∴ 6 similar mangoes cost sh. 200

#### Activity

- 1. 1 ruler costs sh. 400. What is the cost of 3 similar rulers?
- 2. 1 pencil costs sh. What is the cost of 5 similar pencils?
- 3. 4 sweets cost sh. 200. What is the cost of 1 similar sweet?
- 4. 6 pockets of biscuits cost sh. 600. what is the cost of 1 similar pocket of biscuits?
- 5. 3 tins cost sh. 900. what is the cost of 2 similar tins?
- 6. 5 rubbers cost sh. 1000. what is the cost of 7 similar rubbers? Remarks:

#### LESSON 7

# SUBTOPIC: BUYING AND SELLING (SHOPPING BILLS) (PRICE LIST)

#### CONTENT

#### Example

| Item                | Price in shillings |
|---------------------|--------------------|
| 1 bar of soap       | 1000/=             |
| 1 kg of sugar       | 1800/=             |
| 1 kg of maize flour | 1200/=             |
| 1 packet of salt    | 400/=              |
| An egg              | 150/=              |

#### Questions

- a) Find the cost of 3 kg of sugar.
- b) If Allen bought 4kg of maize flow and 1 bar or soap. How much money did she pay?
- c) Calculate the cost of buying 1 bar of soap. 1kg of sugar, 1kg of flour, 1 packet of salt.
- d) Find the total expenditure if one buys all the items above.

#### **ACTIVITY**

Exercise 8e page 152 (Mk New Edition)

#### **LESSON 8**

SUBTOPIC: SHOPPING BILLS

## **CONTENT**

# Example I

Mariam went to the school canteen and bought the following items

- 3 chaps at 500/= each.
- 4 chapats at 800/=
- 2 bottles of soda at 500/= each.
  - a) Find her total expenditure.
  - b) Find her balance if she went with 50000/=

Sh.5,000

-sh.4,300

Sh. 700

=====

| Item      | Method (working) | Cost    |
|-----------|------------------|---------|
| 3 Chaps   | Sh. 500 x 3      | Sh.1500 |
| 4 Chapats | Sh. 800          | Sh.800  |
| 2 Soda    | Sh. 1000 x2      | Sh.2000 |
| Total     |                  | Sh.4300 |

#### **Working**

| Chaps          | soda            | chapats: |
|----------------|-----------------|----------|
| Sh. 500        | sh.1000         | sh. 800  |
| <u>Sh. X 3</u> | sh. <u>x_2</u>  |          |
| <u>1500</u>    | sh. <u>2000</u> |          |

ACTIVITY: Exercise 8i page 153 MK (Old edition)

More activity:

- 1. If Asekenye bought 2 loaves of bread at sh. 800 @ loaf, 4 books at sh. 300 per book and 4 bundles of onions at sh. 500.
- a) What was her total expenditure?

b) If she had sh. 5000, calculate her balance.

#### **LESSON 9**

# SUBTOPIC: DIVISION OF MONEY.

#### CONTENT

Example

4 books COST 1200/=. What is the cost of one book.

4 books 
$$cost - 1200 sh 300$$
  
1 book  $cost - 1200 sh 300$   
300  $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $= 4 1200$   
 $=$ 

#### **ACTIVITY**

Exercise 8f page 153 (Mk new edition)

# LESSON 10

# **SUBTOPIC: FINDING PROFIT**

#### CONTENT

Profit = selling price – buying price.

#### **Example**

Abdul bought a shirt at sh. 800. He sold it at 1000/= what was his profit?

Buying price sh.800
Selling price sh.1000
Profit = s . p - B.P
= Shs. 1000 - sh. 800

Profit = Shs. 200

ACTIVITY: Exercise 8k page 155 (old Mk)

# LESSON 11.

# **SUBTOPIC: LOSS**

# CONTENT

Loss is the amount of money when the buying price is more than the selling price.

Loss = Buying price – selling price

BP - SP

The buying price can also be called cost price (CP)

#### Example

John bought a shirt at 7200/= and sold it at 6000/= calculate his loss.

Loss = BP - SP BP = 7200/=SP = 6000/=

SP = 6000/=:.Loss = sh.7200 - sh. 6000 = sh. 7200
= sh. 6000
= sh. 1200

#### **ACTIVITY**

MK Primary Mathematics Book 4 (Old edition) Exercise 8l page 156.

#### LESSON 12

**SUBTOPIC:** POSTAGE RATES

#### CONTENT

Refer to table on page 162 Mk (old edition)

# Example

Joseph sends 2 letters to Kenya and 3 letters to Tanzania. How much will he pay altogether.

2 letters to Kenya sh.400 x 2 = sh. 800  $\frac{\text{side work}}{\text{sh. 400}}$  3 letters to Tanzania sh.400 x 3 = +sh. 1200 sh. 800 sh. 400 Total amount  $\frac{\text{Sh. 2000}}{\text{Sh. 1600}}$   $\frac{\text{x}}{\text{sh. 1200}}$   $\frac{\text{x}}{\text{Sh. 1600}}$  sh. 1200

Therefore, Joseph will pay 2000/=

# **ACTIVITY**

Exercise 8q

Page 163 Mk (old edition)

#### LESSON: 13

#### **TOPICAL QUESTIONS (MONEY)**

- 1. How much money is in 3 one hundred shilling coins.
- 2. Change
  - a) 5 shillings to cents
  - b) 600 cts to shillings.
- 3. Work out:

| a) Shs | cts | Sh    | cts |
|--------|-----|-------|-----|
| 43     | 40  | 52    | 30  |
| + 14   | 30  | - 1 1 | 14  |

- 4. The cost of 1 pen is 400/=. Find the cost of 6 similar pens.
- 5. Study the price list below and answer the questions that follow.

| Item                | Price  |
|---------------------|--------|
| 1 book              | 1500/= |
| 1 packet of biscuit | 2000/= |
| 1 bar of soap       | 800/=  |

A sweet 100/=

- a) Find the cost of 4 packets of biscuits
- b) Find the cost of buying 1 book and a sweet
  - 6. 3 pens cost sh. 900. What is the cost of 1 pen?
  - 7. An article costs sh. 300. Calculate the profit made if is sold at sh. 700
  - 8. Tom bought a shirt at 1000/= and sold at 800/=. What was his loss?

#### LESSON 14

# SUBTOPIC : CHANGING WEEKS TO DAYS CONTENT

1 week has 7 days
Example
How many days are in 3 wks.
1 wk - 7 days
3 wks - 3 x 7 = 21 days.

#### **Example**

Joseph spent 6 weeks in London. How many days were they
1 wk - 7 days
6wk - 6 x 7
= 21 days

#### **ACTIVITY**

Exercise 9p 178 (Mk new edition).

#### LESSON 15

# **SUBTOPIC: CHANGING DAYS TO WEEKS**

#### CONTENT

#### Example

How many weeks are there in 63 weeks?

7 days 
$$-$$

$$\begin{array}{c}
1 \\
63 \text{ day}
\end{array}$$
week
weeks
$$\begin{array}{c}
63 \\
7
\end{array}$$
In 63 days there are 9 weeks.

#### **ACTIVITY**

Exercise 9n page 176 (old Mk).

# **LESSON 16**

# **SUBTOPIC: ADDITION OF WEEKS AND DAYS**

# **CONTENT** Example:

Add: Weeks Days SW 5 5 5 4 6 11days

= 1 week and 3 days

#### **LESSON 17**

SUBTOPIC: CHANGING HOURS TO MINUTES

CONTENT

HINT: 1 Hour = 60 minutes ,  $\frac{1}{2}$  an hr = 30 minutes,  $\frac{1}{4}$  an hr is 15min.

Example

Change 4 hours to minutes

1 hr = 60 minuts 4hrs = (4 x 60) min = 240 min.

b) How many minutes are in 3 ¼ hours?

 $3 \frac{1}{4} \text{ hrs} = (3 \times \frac{1}{4}) \text{ hours}$  1 hr = 60 min  $3 \text{ hrs} = (3 \times 60) = 180 \text{ min}$   $\frac{1}{4} \text{ hr} = (\frac{1}{4} \times 60) = 15 \text{ min}$  $\frac{1}{4} \text{ hr} = (\frac{1}{4} \times 60) = 15 \text{ min}$ 

 $3 \frac{1}{4} \text{ hrs} = (180 + 15) \text{ min}$ 

= 195 min.

ACTIVITY:

Exercise 9b page 163 (New MK)

# **LESSON 18**

SUBTOPIC: CHANGING MINUTES TO HOURS

CONTENT...

Example.

Change 180 minutes to hours.

60 min – 1 hour 180 min – <u>180</u> 60

= 3 hrs

#### **Example**

Peter spent 240 minutes in an exam. How many hours ere they.

60 min - 1 hr 240 min - <u>240</u> 60

= 4 hrs.

#### **ACTIVITY:**

Exercise 9c Mk primary mathematics bk 4 (New edition) page 163 exercise 9c.

#### LESSON 19

#### **SUBTOPIC: ADDITION OF TIME.**

**CONTENT**: Addition of hours and minutes

# **Examples**

| 1. | Hrs | Min |  |
|----|-----|-----|--|
|    | 1   | 30  |  |
| +  | 3   | 35  |  |
|    | 5   | 05  |  |

==============

ii) Add 3 hrs 35 minutes to 4 hours 42 minutes

Hrs Mi 3 35 4 42 8 17

# **ACTIVITY**:

Exercise 9e Mk bk 4 page 165.

#### LESSON 20

# SUBTOPIC: SUBTRACTION OF TIME

#### CONTENT

| a) | Subtract |     |
|----|----------|-----|
|    | HRS      | Min |
|    | 3        | 20  |
|    | 1        | 30  |
|    | 1        | 50  |
|    |          |     |

b) A party lasted 6 hours 30 minutes. If 1 hr 45 minutes were used to serve food. How long did the other events take?

| Hrs   | Min |
|-------|-----|
| 6     | 30  |
| <br>1 | 45  |
| 4     | 45  |

Therefore the other events took 4hrs 45 minutes.

#### **ACTIVITY**:

Exercise 9g page 171 Nos. 1 – 5 and exercise 9h page 172 Nos. 1 – 5 (Mk old edition)

#### LESSON 21

SUBTOPIC: DURATION OF TIME

CONTENT: DURATION OF TIME

#### Examples

i) Maishara started walking from her home at 7:15 am and reached school at 8:15 am. How long did it take her?

|                          |   | Hrs | S   | Min   |
|--------------------------|---|-----|-----|-------|
| Masike reached school at |   | 8   | :   | 15 am |
| Started walking at       | - | 7_  | :   | 15 am |
| She took                 |   | 1   | :   | 00hr  |
|                          |   | ==  | === | ===== |

Therefore she took 1 hour.

ii) The party started at 1:30 p.m and ended at 9:00 p.m. Find out how long it lasted.

|                    |   | Hrs | Mın |
|--------------------|---|-----|-----|
| The party ended at |   | 9   | 00  |
| It started at      | - | 1   | 30  |
| It took            |   | 7   | 30  |

It took 7 ½ hrs

# **ACTIVITY:**

Exercise 9m page 176 Mk bk 4.

#### LESSON 22

SUBTOPIC: MULTIPLICATION OF TIME

#### CONTENT

Multiplication of hours and minutes.

#### Example 1

| Hrs | Min | side work  |          |
|-----|-----|------------|----------|
| 3   | 20  | 2 0        | 80 ÷ 60  |
| Χ   | 4   | <u>x 4</u> | = 1 r 20 |
| 13  | 20  | 80         |          |
|     |     |            |          |

Example ii

| Hrs   | min   | side work |                     |
|-------|-------|-----------|---------------------|
| 2     | 30    | 30        | 90 ÷ 60             |
| Χ     | 3     | x 3       | 90 ÷ 60<br>= 1 r 30 |
| 7     | 30    | 90        |                     |
| ===== | ===== |           |                     |

# **ACTIVITY**

Exercise 9i Mk bk 4 page 171.

# LESSON 23

# SUBTOPIC DIVISION OF TIME

# **Examples**

1. Divide



3 hrs and 10 mins



ACTIVITY: Exercise 9j page 174 (Mk old edition)

# SUBTOPIC: WRITING TIME USING AM AND PM CONTENT:

The time between midnight and midday is written using am. From midday to midnight we use pm

# Example

Write in figures

Twenty minutes past tow o'clock in the morning. 6:20 a.m

Twenty minutes to seven o'clock in the evening. 6:40pm

#### **ACTIVITY**

Exercise 9L page 175 (Mk New edition).

#### **LESSON 25**

#### SUBTOPIC :CHANGING DAYS TO HOURS

#### CONTENT:

#### Example

How many hours ar ther in 5 days?

1 day – 24 hours

5 days - 2 4

X 5

120 in five days ther are 120 hours.

# **ACTIVITY**:

Exericse 9l pag 175 (old Mk).

#### LESSON 26

**SUBTOPIC: CHANGING HOURS TO DAYS** 

CONTENT: Examples

1.Change 72 hours to days

$$1 day = 24 hours$$

72 days

24 days

2. How many days are in 48 hours?

1 day = 24 hours

48 days = 48 hgours

24 days

= 2 days

# **ACTIVITY**:

Exercise 9k page 175 (Mk old edition)

#### **LESSON 27**

# SUBTOPIC: SUBTRACTING WEEKS AND DAY

#### CONTENT

|      | 1     | 4        |                |
|------|-------|----------|----------------|
| -    | 1     | <u> </u> |                |
|      | 3     | 2        | 7 + 2 = 9 days |
| 1    | weeks | days     |                |
| Exa  | mples |          |                |
| Fire |       |          | ĺ              |

3. Atim went to her aunt's place and spent 4 weeks 3 days there. She spent 2 weeks 6 days reading in a nearby school and the rest or the days she helped her aunt how long did she take helping her aunt?

| WKS   | DAYS |                  |
|-------|------|------------------|
| 4     | 3    | 7 + 3 = 10  days |
| <br>2 | 6    | ·                |
| 1     | 4    |                  |

She took 1 week 4 days helping her aunt.

ACTIVITY: Exercise 9t page 182 (Mk new edition)

# **LESSON 28**

# SUBTOPIC: ORDINARY YEAR AND LEAP YEARS CONTENT:

An ordinary year has 365 days.

A leap year has 366 days.

===========

Identifying ordinary year and leap year.

We divide by 4 if we get a remainder then it is an ordinary year. If you don't get a remainder then it is a leap year.

Example

a) 1964

b) 1975



Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211 16 16 36 37 36 36 15 4 <u>- 12</u> 4 0 1975 is an ordinary year. 1964 is a leap year LESSON 29 **TOPICAL QUESTIONS (TIME)** 1. How many minutes are I hour? 2. Change 4 hours to minutes. 3. Write 180 minutes as hours 4. Work out a) Hrs Mins WKs Days Hrs b) c) Min 40 3 7 35 3 6 5 50 2 45 1 ========== ========= ========= c) Wks Days 3 7 4 6 ======= 5. Use a.m or p.m a) 6 hours after midnight \_\_\_ b) 4 hours after noon \_\_\_\_ 6. Use > , < or = a) 2 weeks \_\_\_\_\_ a fortnight. b) 6 days \_\_\_\_ a week.

c) 1 hour \_\_\_\_\_ 30 minutes.

# **SUBTOPIC: TOPIC LENGTH.**

CONTENT

HINT: 1 m = 100 cm

Example

Change 3m to cm

1m = 100cm

 $3m = 3m \times 1000cm$ 

1m

=  $3m = 3m \times 100cm$ 

1m

 $= (3 \times 100)$ cm

= 300 cm

ACTIVITY: Exercise 10a page 186 (old Mk)

# LESSON 31

# **SUBTOPIC: CHANGING CENTIMETERS TO METRES**

CONTENT

Hint: 100cm = 1m

Example II Example II

Chang 300m to metres Change 9800cm to m

3m 98m ====

ACTIVITY: Exercise 10 b No. 1 – 2 Mk bk 4 page 186.

# **LESSON 32**

# **SUBTOPIC: EXPRESSING LENGTH IN METRES AND CENTIMETERS**

#### CONTENT

Example

Change 120 centimeters to meters

120 cm = (100 + 20) cm

= <u>100cm</u> + 20cm

100cm = 1m 20cm Or 120 cm = 1 m 20cm

ACTIVITY: Exercise 10c page 187 (New Mk).

SUBTOPIC: ADDITION OF METERS AND CENTIMETERS.

# CONTENT.

# **EXAMPLES**

c) Atim slashed Hm 4m 75cm of a path. Munagira slashed 3m 65cm long. What total length of the path did they slash altogether?

They slashed 8m 40 cm of the path altogether.

ACTIVITY: Exercise 10c page 187 (MK old edition).

# **LESSON 34**

| SUBTOPIC       | : | SU | <b>BTRACTION</b> | OF METRES |
|----------------|---|----|------------------|-----------|
| CONTENT        |   |    |                  |           |
| <b>Example</b> |   |    |                  |           |
| Subtraction    |   | 5m | 20cm - 2m        | 65 cm.    |
|                |   | М  | СМ               | CM        |
|                |   | 5  | 140              | 140       |
|                | - | 2  | 65               | -65       |

2

# **Example**

Joshua had a string measuring 6m 40 cm and he cut off 1M 60CM. What is the length of the string that remained.

75

ACTIVITY Exercise

MK primary mathematics book New edition page 189 exercise 10g.

#### LESSON: 35

#### SUBTOPIC: MULTIPLICATION OF METER AND CENTIMETERS

#### CONTENT

Example I

Mary, Joseph and Karen each bought 3m 45cm of cloth what was the total length to the cloth bough. Each bought 3m 45cm

Therefore, 3 pupils bought

| M  | CM |
|----|----|
| 3  | 45 |
| Χ  | 3  |
| 10 | 35 |
|    |    |

| Or              | M     | CM    |
|-----------------|-------|-------|
| Mary bough      | 3     | 45    |
| Joseph bought   | 3     | 45    |
| Kareen bought   | 3     | 45    |
| Altogether they | 10    | 35    |
| Bough           | ===== | ===== |

Altogether they bought 10m . 35 cm.

# Example I

A family 7 people got 8m 25cm of the cloth each. What was the total length of cloth got by the whole family.

| Each got                | 8m | 25cm |
|-------------------------|----|------|
| Therefore 7 people got  | M  | CM   |
| · · · · · · · · · · · · | 8  | 25   |
|                         | X  | 3    |
|                         | 10 | 35   |
|                         |    |      |

Altogether they bought 10 m 35cm

#### Example I

A family of 7 people got 8m 25cm of the cloth each. What was the total length of cloth got by the whole family.

|                        | 57 | 75   |
|------------------------|----|------|
|                        | X  | 7    |
|                        | 8  | 25   |
| Therefore 7 people got | M  | CM   |
| Each got               | 8m | 25cm |
|                        |    |      |

Altogether they got 57m 75cm.

**ACTIVITY:** Exercise 10h Mk bk4 page 190.

#### LESSON 36

#### SUBTOPIC: DIVISION OF METERS AND CENTIMETERS

**CONTENT**: (Remember to divide meters first)

Example

The piece of timber 2 boys are to share equally is 8m 10cm long. What length while each get?

8M 10cm shared by 2 boys 8m 10cm ÷ 2

8m ÷ 2 = 4m 10cm ÷ 2 = 5cm 4m 5cm

Each got 4m 5cm long

**ACTIVITY**: Exercise 10i page 191 (New MK)

LESSON 37

SUBTOPIC: CHANGING KILOMETRES TO METRES

# **CONTENT**

# Example

- 1. Change 5km to m 1km = 1000m 5km = 1000 x 5 = 5,000m
- 2. Convert 3km 60m to metres.

Change the km to m,then add the metres.

ACTIVITY: Exercise 10h page 191 and exercise 10i page 192 (Mk old edition)

# LESSON 38

**SUBTOPIC: MEASURING LONG DISTANCES** 

CONTENT: CHANGING METERS TO KILOMETERS

<u>Example I</u>

 $\overline{\text{N.B:}} \ 1000\text{m} = 1\text{km}$ 

Change 3000m to km

Then 3000 m = 3000 1000

= 3km

# Example II

Change 20,000m to km since 1000m = 1km

Then 20,000m = 20,000 1000

= 20km.

# **ACTIVITY**

Exercise 10j Mk bk 4 page 193.

LESSON: 39

SUBTOPIC: ADDITION OF KILOMETERS AND METERS.

CONTENT: Remember 1km = 1000m

Example: Add KM M

15 880 + 6 750 22 630

\_\_\_\_\_

ACTIVITY: Exercise 10p page 197 (New MK).

# LESSON 40

SUBTOPIC: SUBTRACTION OF KM AND METRES

CONTENT Example

Subtract 2km 400cm from 7km 100cm

KM M 7 100 - 2 400

<u>4</u> 700 4km 700m

# **ACTIVITY**

MK Primary Mathematics bk 4 (page 198 exercise 10q (Mk new edition).

LESSON 41

SUBTOPIC: MULTIPLICATION OF KM AND METRES

CONTENT: Example

1. KM M

| 8      | 350   |
|--------|-------|
| X      | 3     |
| 25     | 050   |
| ====== | ===== |

ACTIVITY : Exercise 10r page 200 (MK new edition) **LESSON 42** 

# **SUBTOPIC:** Finding perimeter

#### **CONTENT: Definition.**

- (i) Perimeter is the total distance around a figure.
- (ii) Finding perimeter by measuring lengths of sides of a figure.

  We use a centimeter ruler to measure the lengths of a given figure.

# **Example:**

Use a centimeter ruler to measure the lengths of the sides of the figure below.



 Before measuring:
 After measuring:

 PQ = \_\_\_\_cm
 PQ = 7cm

 QR = \_\_\_cm
 QR = 2cm

Add PQ to QR to RS to SP to get the total distance around rectangle PQRS.

$$= (7cm + 2cm) + (7cm + 2cm)$$

$$= 9cm + 9cm$$

The total distance around the figure is 18cm

∴the perimeter is 18cm.

Activity: Exercise 11a

**REMARKS**:

#### LESSON 43

# **SUBTOPIC:** Finding Perimeter.

# **CONTENT**: Finding perimeter of a rectangle:

Example:



Find the perimeter of the figure above.

$$P = L + W + L + W$$
  
=  $(5cm + 2cm) + (5cm + 2cm)$   
=  $7cm + 7cm$   
=  $14cm$ 

#### ACTIVITY:

Exercise 11b page 200 (MK Old edition)

**REMARKS** 

# LESSON 44

SUBTOPIC: Finding length or width of a rectangle.

**CONTENT**: Finding length or width of a rectangle when perimeter is given.

#### Example:

Find the width of a rectangle if its length is 6m and perimeter is 20m.

# Sketch

$$P = L + w + L + W$$
  
 $20m = 6m + w + 6m + w$   
 $20m = 6m + 6m + w + w$   
 $20m = 12m + 2w$   
 $20 - 12m = 12m - 12m + 2w$ 

$$18m = 0 + 2w$$

$$18m = 2w$$

$$18m = 2w$$

$$2 2$$

$$9m = w$$

$$w = 9m$$
∴ width = 9m

#### **ACTIVITY**

1. Find the length of a rectangle below whose perimeter is 18m and width is 4m.



2. Work out the width of the figure below is its perimeter is 20cm.



3. What is the length of the figure below if its width is 3m and perimeter is 24m?



4. Work out the width of a rectangle whose length is 7cm and perimeter is 22cm. REMARKS:

# LESSON 45

SUBTOPIC: DIVISION OF LONG DISTANCE

**CONTENT: DIVISION OF LONG DISTANCE** 

Divide 25km 40m by 8



ACTIVITY: Exercise 10r Mk bk 4 page 200.

LESSON 46:

# SUBTOPIC: PERIMETER OF DIFFERENT FIGURES

# **CONTENT:**

Hint: Perimeter is the distance around a figure

### **Example**

Find the distance around the following figures





P = Add the side around the figure (12 + 3 + 7 + 3+ 5+ 6) = 15 + 10 + 11 = 36cm



$$= 5 + 5 + 5$$
  
=  $5 + 4 + 4$   
= 13 cm

ACTIVITY: Exercise 116 page 201 (old edition)

# SUBTOPIC: PERIMETER OF REGULAR POLYGONS.

# **CONTENT- Definition:**

Polygon:- A polygon is a closed figure joined by its line segments at its vertices.

Regular polygon:- A regular polygon is a polygon with all its sides and angles equal.

Examples of regular polygons include equilateral, square, regular pentagon e.t.c

# Example

Find the perimeter of the figures below.



$$P = S + S + S P = 6 + 6 + 6$$



$$P = S + S + S + S$$

$$P = 5 + 5 + 5 + 5$$

20cm



$$P = S + S + S + S + S$$

$$P = 4+4+4+4+4$$

# **ACTIVITY**

1. Find the perimeter of each of the following:
(i) (ii) (iii)









<u>THE</u> GIVEN. **SIDE OF SQUARE WHEN** 

FINDING PERIMETER IS

# **CONTENT**

A square is an example of regular polygon.

It has all its sides and angles equal.

**Examples**: if the perimeter of the square is 48cm Find the length of each side.

Sketch

$$P = S + S + S + S$$

$$P = 4s$$

P = 48cm

$$48cm = 4s$$
$$\underline{48}cm = \underline{4s}$$
$$4$$

∴The length of each side is 12cm.

ACTIVITY: Exercise 11d page 205 (old edition MK)

# LESSON 49

TOPIC: AREA OF RECTANGLES CONTENT

Area is the amount of space covered by a flat surface. Are can be measured using small square units.

# **Example I**



A = 12 square units



 $24 dm^2$ 

A = Lxw A = 6dm x 4dm

Example II



A = L X W A = 5cm x 3cm A = 15cm2

Α

3cm ACTIVITY

Exercise 12a page 210 Mk bk 4.

# LESSON 50

# SUBTOPIC: AREA OF THE SQUARE

# CONTENT



A = S X S = 5cm x 5cm A = 25cm<sup>2</sup>



A square garden measures 9cm.

Find its area.



**ACTIVITY:** Exercise 11c page 208 (Mk new edition)

# LESSON 51

# SUBTOPIC: FINDING MISSING LENGTHS OF POLYGONS (FIGURES).

CONTENT:

Examples





$$y = 4cm + 6cm = 10cm$$





(ii)

#### SUBTOPIC: AREA BY SEPARATING FIGURES



- a) Find x 2 + 4 = 6cm
- b) Find the area 2cm A = I x W

  A 5cm 5 x 2 10cm<sup>2</sup>

  A = L x w 6 x 3 18cm<sup>2</sup>

  Total 1 0 cm<sup>2</sup> + 1 8cm<sup>2</sup>

# **ACTIVITY**

28cm<sup>2</sup>

(Mk old edition ) bk 4 exercise 12b page 212 and 213.

# <u>SUBTOPIC</u>: FINDING THE LENGTH OR WIDTH OF A RECTANGLE WHEN AREA IS GIVEN.

#### CONTENT

#### Example.

The area of a rectangle is 24cm<sup>2</sup>. Its length is 6cm. find its width.

$$A = L \times W$$

$$24cm^{2} = 6cm \times w$$

$$24cm \times cm = 6cm \times w$$

$$\frac{24cm}{6cm} \times cm = \frac{1}{6cm} \times w$$

: its width is 4cm

ACTIVITY: Exercise 11g Mk bk 4 page 209. (old edition).

# **SUBTOPIC: FINDING AREA OF A TRIANGLE:**

**CONTENT** Finding area of a triangle using small squares.

# Example:



Area of the shaded part is half the area of a rectangle ( $^{1}/_{2}$  of  $18cm^{2}$ ) that makes the area of a triangle ( $9cm^{2}$ )

Then the area of a triangle equals the half of the area of a rectangle.

Then area of a triangle =  $\frac{1}{2}$  x L x W

$$= \frac{1}{2} \times b \times h$$

= ½ x base x height

= ½ x 6cm x 3cm

$$=$$
 9cm<sup>2</sup>.

Activity Exercise 11h page 212 (MK old edition)

REMARKS.

b)

# **SUBTOPIC: AREA OF TRIANGLES**

#### CONTENT

Example

Calculate the area of the triangle below.

5cm

50

base = 6cm Height = 5cm  $A = \frac{1}{2} x$  base x height  $A = \frac{1}{2} x$  b x h

6cm  $A = \frac{1}{2} \times 6 \text{cm} \times 5 \text{cm}$ 

 $A = 3cm \times 5cm$  $A = 15cm^2$  8cm 13cm 7cm 12cm

 $A = \frac{1}{2} \times b \times h$ =  $\frac{1}{2} \times 12 \times 7$ =  $6 \times 7$ =  $42 \text{cm}^2$ 

ACTIVITY: Exercise 11i page 213 (Old edition)

# **LESSON 55 TOPICAL QUESTIONS (LENGTH)**

Complete the table

| Metre | 1   | 2 |     | 3 | 7 |
|-------|-----|---|-----|---|---|
| Cm    | 100 |   | 400 |   |   |

b)

| D) |      |   |      |   |   |
|----|------|---|------|---|---|
| Km | 1    | 4 |      | 5 | 9 |
| M  | 1000 |   | 7000 |   |   |

2. Work out

|    | 0 |    |
|----|---|----|
| a) | M | CM |
| ·  | 4 | 20 |
| +  | 2 | 99 |

===========

==========

d) Km M 9 294 - 8 720

========

Find the distance around this figure.

9m



4. A rope is 53m and 41 cm long. If a I cut off 29m 65cm, what length do I remain with?

5. Find the perimeter of these figures



b)







7. Find the area of these figures .



b) 2m 9m



3m

LESSON: 56

TOPIC: CAPACITY

SUBTOPIC: HALF AND QUARTER LITRES.

CONTENT :

#### NOTE:

1 litre = 2 half litres 1 litre = 4 quarter litres 2 litres = (2 + 2) half litres 2 litres = (4 + 4) quarter litres

2 litres = (2 + 2) half litres 2 litres = (4 + 4) quarter litres 3 litres = (4 + 4 + 4) quarter litres.

# **Example**

How many ½ litre bottle are in 1 litre container? 1 litre = 2 half lire bottles.

# Example II

How many ¼ litres are in 2 litres?

2 litres = (4 + 4) quarter litres.

2 litres = B quarter litres.

#### **ACTIVITY**

Exercise 13a MK bk 4 page 223

LESSON: 57

TOPIC: CAPACITY.

**SUBTOPIC**: Half and quarter litres.

# **CONTENT:**

# NOTE:

 $\begin{array}{lll} 1 \text{ litre} &=& 2 \text{ half litres} & 1 \text{ litre} &=& 4 \text{ quarter litres}. \\ 2 \text{ litres} &=& (2+2) \text{ half litres} & 2 \text{ litres} &=& (4+4) \text{ quarter litres}. \\ 3 \text{ litres} &=& (4+4+4) \text{ quarter litres}. \end{array}$ 

#### Example I

How many ½ litre. Bottles are in 1 litre container?

1 litre = 2 half litre bottles.

# Example II

How many ¼ litres are in 2 litres? 2 litres = (4 + 4) quarter litres

2 litres = B quarter litres.

#### **ACTIVITY**

Exercise 13a bk 4 page 223

Remarks.

# LESSON 58

SUBTOPIC: ADDITION OF LITRES AS HALF LITRES.

CONTENT: Examples

1. Add 1 ½ and 2 ½ litres

$$1 \frac{1}{2} + 2 \frac{1}{2}$$
  
 $1 + 2 = 3$   
 $\frac{1}{2} + \frac{1}{2} = \frac{1+1}{2} = \frac{2}{2} = 1$   
 $3 + 1 = 4$  litres

2. Mugumu had 2 ½ litres of milk and 4 litres of milk. How much milk does e have altogether?

$$2\frac{1}{2} + 4$$

$$= 2 + 4 + \frac{1}{2}$$

$$=$$
  $6 + \frac{1}{2}$ 

= <u>6 ½ litres.</u>

Activity: 12c page 224 (Mk old edition)

# REMARKS.

**LESSON** : 59

SUBTOPIC: ADDITION OF LITRES AND MILLITRES

#### CONTENT:

# Example

Add

|   | Į  | ml  |
|---|----|-----|
|   | 24 | 675 |
| + | 18 | 725 |
|   | 43 | 400 |

2. A home uses 95 litres of water in the morning and 87 litres in the afternoon. How much water is used a day?

Morning
Afternoon +

Activity: exercise 13 c (s 13c page 225 - 227) New Mk.

#### **LESSON 60**

TOPIC: WEIGHT

SUBTOPIC: Half and quarter kilograms.

# **CONTENT:**

Hints:

1kg = 1/2 kg = 1/4 kg = 1/5kg = 1. 1000g 2. 500g

3. 250gm

4. 200gm 5.  $\frac{1}{2}$  kg +  $\frac{1}{2}$  kg = 1kg therefore 500g + 500gm = 1000gm

2 half kg =1kg

 $\frac{1}{4}$  g +  $\frac{1}{4}$  kg +  $\frac{1}{4}$  kg +  $\frac{1}{4}$  kg = 1kg 6. 250g + 250g + 250g + 250g = 1000g

4 quarters kg =1kg.

# Example

Say true or false

a) 1 kg is less than 700gm

(c) 400gm is less than  $\frac{1}{4}$  kg

b) 3/4kg is less than ½ kg

#### ACTIVITY

Exercise 14a and 14b MK Bk 4 pages 228 and 229.

Remarks.

LESSON 61

SUBTOPIC: CHANGING KG TO GRAMMES

CONTENT:

Hint: 1 kg = 1000 g

**Example** 

Change 2kg to grams

1 kg = 1000 g

 $2kg = (2kg \times 1000)g$ 

1kg

= 2000q

ACTIVITY:

Exercise 14c page 230 (New MK)

Remarks.

LESSON 62

SUBTOPIC: CHANGING GRAMS TO KILOGRAMS

**CONTENT:** REMEMBER 1000g = 1kg.

Example

Activity: exercise 14d page 230 (New MK)

Remarks.

# **LESSON 63**

SUBTOPIC: ADDITION OF KG AND GRAMS

CONTENT

**Example** Add Kg g 2 2

Remarks.

#### LESSON 64

SUBTOPIC: SUBTRACTION OF KG AND GRAMS

CONTENT: Example

3. What weight remains when 17kg 68g is removed from 37kg 84g?

| g        |
|----------|
| g<br>8 4 |
| 68       |
| 16       |
|          |

===========

Therefore: 20kg 16g remains.

**ACTIVITY**: 12 "S" Page 236 and 12t page 237 Nos 1 – 10 (MK old edition).

Remarks.

#### **LESSON 65**

SUBTOPIC: MULTIPLICATION OF KILOGRAMS AND GRAMS

**CONTENT**Example I

Work out

 Example II

Kg gm

4 310

x 3

12 930

=======

**ACTIVITY** 

Exercise 14j Mk bk 4 page 235.

Remarks.

#### **LESSON 66**

SUBTOPIC: VOLUME OF CUBES AND CUBOIDS

CONTENT Examples

Find the volume of the figures below.

2cm

4cm

3cm

 $S \times S \times S$  V=  $3 \times 3 \times 3$  = 4

= 3 x 3 x 3 = 27cm<sup>3</sup>

V = L X W X h= 4 x 2 x 3 = 8 x 3 = 24cm<sup>3</sup>

ACTIVITY: Exercise 129 page 220 (old MK)

Remarks.

V=

# TROPICAL QUESTIONS (CAPACITY) (S) WEIGHT)

# **LESSON 67**

- 1. How many quarter litres are there in 2 litres?
- 2. Work out:
- a)  $4\frac{1}{2}$  litres  $+3\frac{1}{2}$  litres.
- b) kidde had 18 litres of water. 11 litres were used. How many litres remained?

a)



b)



- 4. Change 8kg to grams
- 5. Work out
- a) kg g 13 150 <u>X 5</u>

=========

b) kg g 4 450 + 3 749

==========

c) kg g 5 102 - 3 924

=========

6. Charles gave ¼ kg of meat to Sarah. How many grams did he give to Sarah?

#### PRIMARY THREE

# **EVALUATION ACTIVITY**

- 1. Mr. Obbo was born in 1970. How old was Mr. Obbo in 1989?
- 2. Alice was born in 1988. How old was Alice in 1996?
- 2. Sir Apollo Kaggwa was started in 2000. How old is it now?

Type of money Notes and coins

| Notes       | Coins      |
|-------------|------------|
| 1000 notes  | 50/= coin  |
| 50,000 note | 100/= coin |
| 5,000 note  |            |
| 10,000 note | 200/= coin |
| 20.000 note | 500/= coin |

# **EVALUATION ACTIVITY**

- 1. Name the two types of money we have in Uganda.
- 2. Identify any 3 notes we have in our country.
- 3. Name the features found on these coins

100/= coin

200/= coin

50/= coin

#### LESSON 69

Addition of money

**Example**: sh

100

<u>+50</u>

150

===

#### **Evaluation**

(phase 1 activity)

- 1. David had sh 6750. He got 2870 from the younger sister. How much money did he have altogether?
- 2. Add: Sh 3 0 0 Shs +3 5 0

============

# LESSON 70

# **SUBTRACTION OF MONEY**

Eg sh 750

| _   | Sh     | 100    |
|-----|--------|--------|
|     | Sh     | 650    |
| === | ====== | ====== |

# **EVALUATION ACTIVITY**

1. Lule had sh. 1000. He gave sh. 700 to Annet. How much did he remain with?

# **Expected answer**