Week one lesson four

SETS

Review of types of sets.

A set is a collection of well defined members or elements.

TYPES OF SETS (Review)

1. Empty set or null set

This is a set without any members.
Symbol: \{ \} or Φ
e.g. Pupils in a class without heads.
2. Equivalent sets

These are sets with the same number of members but the members may be different.

Symbol: \Leftrightarrow
e.g. $A=\{b, c, d, e\} \quad B=\{0,1,2,3\}$
set A is equivalent to set B
$A \Leftrightarrow B$
N.B. < $\neq>$ means "not equivalent to"
3. Equal sets

These are sets with the same number of members which are exactly the same.

Symbol: =
e.g. $K=\{a, b, c, c\} \quad L=\{b, a, c\}$

Set K is equal to set L because they have the same number and the same members.

$$
K=L
$$

4. Disjoint sets

These are sets without any common members.
e.g. $M=\{6,7,8\}$

$$
\mathrm{N}=\{2,3,4,5\}
$$

Set M and set N don't have any common members.

REF: \quad Primary MTC Bk 4 pg 1

- Understanding MTC bk 4 pg 1
- Primary MTC Bk 4 pg 9
- Primary school MTC bk 4 pg 1

Week one lesson five.

UNION, INTERSECTION AND NUMBER OF MEMBERS

UNION SETS (Review)

This is a set which contains all the members in the given sets.
N.B. Common members are written once.

Symbol: U
e.g. Set $P=\{a, e,, o, u\}$

$$
Q=\{2,4,6,8\}
$$

Set $P \cup Q=\{\mathrm{a}, \mathrm{e}, \mathrm{o}, \mathrm{u}, 2,4,6,8\}$

INTERSECTION SET (Review)

This a set with the common members of the given set.
Symbol: " \cap
e.g. $\quad P=\{1,2,3,4,5\}$
$B=\{0,1,3,4,5\}$

Find:
a) $\mathrm{P} \cap \mathrm{B}=\{2,3,4,5\}$
b) $\mathrm{P} \cup \mathrm{B}=\{0,1,2,3,4,5\}$
5. $A=\{B a n a n a$, Orange $\}$

B $=\{$ Apple, Orange $\}$

Find:
a) $\mathrm{A} \cap \mathrm{B}=\{$ Orange $\}$
b) $A \cup B=\{$ Banana, Orange, Apple \}

Week two lesson one. NUMBER OF MEMBERS (Review)

Symbol: n()

Examples

1. $P=\{a, b, c\}$

How many members are in set P.
$n(P)=3$ members.
2. $\mathrm{M}=\{$ days of the week $\}$

Find $\mathrm{n}(\mathrm{M})$
$\mathrm{M}=\{$ Mon, Tue, Wed, Thur, Fri, Sat, Sub $\}$
Find: $\quad \mathrm{n}(\mathrm{M})=7$

REF: - Understanding

- Primary MTC bk 4 pg 14-15
- Kenya Primary MTC Bk 44 pg 15-16

Week two lesson two. VENN DIAGRAM (Review)

Representing information on a Venn diagram:

Example:

Given

$$
\begin{aligned}
& P=\{0,2,4,6,8\} \\
& P=\{1,2,3,4,5,78\}
\end{aligned}
$$

Find: $\mathrm{P} \cap \mathrm{Q}=\{2,4\}$

$$
A \cup B=\quad\{0,1,2,3,4,5,6,7,8\}
$$

Represent the sets on a Venn diagram.

REF: MK bk 5 Pg 12
Primary MTC for Uganda bk 4 Pg 60 - 62MK Bk 4 Pg 11 - 14

Week two lesson three.

Shading Venn Diagrams (Review)

Example:

AUB
$A \cap B$

KUL

$P \cap Q$

Week two lesson four.

Getting information from a Venn Diagram (Review)

List down all members of Set;
$A=\{a, b, c, d, g\}$
$B=\{c, g, d, e, f\}$
$\mathrm{A} \cap \mathrm{B}=\{\mathrm{c}, \mathrm{d}, \mathrm{g}\}$
$A \cup B=\{a, b, c, d, g, e, f\}$
$\mathrm{n}(\mathrm{A} \cap \mathrm{B})=3$ members
REF: MK Bk 5 pg 7 MK Bk 4 pgs 11-14

Week two lesson five.

Difference of sets (Review)
P - Q means members of set P which are not in Set Q , that is, members found in Set P only.

Example:

Given: $\quad P=\{2,3,4,6,8,9\}$

$$
\mathrm{Q}=\{1.2,5,6,7,10\}
$$

Find:

$$
\begin{aligned}
& P-Q=\{3,4,8,9\} \\
& Q-P=1,5,7,10\}
\end{aligned}
$$

Example II

Find: $\mathrm{M}-\mathrm{N}=\{\mathrm{i}, \mathrm{c}, \mathrm{g}\}$

$$
\mathrm{N}-\mathrm{M}=\{\mathrm{d}, \mathrm{e}\}
$$

Week three lesson one.

SUBSETS
A subset is a small set got from the main set.

Symbol:
"C"
" $\$$ " means not a subset of.

Example:

Given;

$$
\begin{aligned}
& \mathrm{E}=\{\text { all pupils in P. } 4\} \\
& \mathrm{K}=\{\text { all boys in P. } 4\} \\
& \mathrm{B}=\{\text { all girls in P. } 4\}
\end{aligned}
$$

Set B and set K are subsets of set E

Example

If: $\mathrm{D}=\{1,2,3,4\}$
$\mathrm{T}=\{2,4\}$
$\mathrm{S}=\{1,3\}$
$\mathrm{K}=\{5,6\}$
T is a subset of D
(T C D)
S is a subset of D (S C D)
K is not a subset of D ($\mathrm{K} \Phi \mathrm{D}$)

Given: $\quad B=\{s, t, v\} \quad$ Form subsets from set B
$\{\mathrm{s}\},\{\mathrm{t}\},\{\mathrm{v}\},\{\mathrm{s}, \mathrm{t}\},\{\mathrm{t}, \mathrm{v}\},\{\mathrm{s}, \mathrm{v}\},\{\mathrm{s}, \mathrm{t}, \mathrm{v}\},\{ \}$
N.B. - An empty set is a subset of the main set.

- A set itself is a subset of that set.

Using a Venn diagram to represent a subset

Using a Venn diagram to represent subsets.

Set P is a subset of set Q PC Q

$$
\begin{aligned}
\text { Given: } & M=\{a, b, c, d, e\} \\
& N=\{a, e\}
\end{aligned}
$$

Represent the sets on a Venn diagram.

$$
\begin{array}{ll}
\text { Find: } & \mathrm{M} \cap \mathrm{~N}=\quad\{\mathrm{a}, \mathrm{e}\} \\
& \mathrm{MUN}=\quad\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
& \mathrm{n}(\mathrm{MUN}) 5 \text { Members }
\end{array}
$$

What is the relationship between P and
B is a subset of P

REF: \quad MK Bk 4 pg 17 (old edition) MK Bk 4 pg 17 (new edition)

Week three lesson two. NUMERACY.

Whole Numbers

Place value and value of whole numbers (Review)

					¢ d H	$\begin{aligned} & \text { 』 } \\ & \text { U } \\ & 0 \end{aligned}$
7041			7	0	4	1
24,678		2	4	6	7	8
132,407	1	3	2	4	0	7

Finding the place value of the given digits.

What is the place value of 4 in 642 ?

:. The place value of 4 is Tens.

Find the place value of each digit in 6738.

6

Thousands
:. The place value of 6 is Thousands
The place value of 7 is Hundreds
The place value of 3 is Tens
The place value of 8 is Ones

REF: - Primary School MTC Bk 4 pg 8

- Learning MTC Bk 4 pg 5
- MK Bk 4 pg 20 (Old edition)

Week three lesson three.

Value of wholes(Review)

Value $=\quad$ digit x place value
Find the value of each of the digits in 672

H T O		
$\int^{6} \quad \begin{aligned} & 2 \\ & \\ & \downarrow \end{aligned}$	$=$	2
${ }^{7} \times 10$		70
6×100	=	600

Find the value of 0 in 6042
6

What is the value of 2 in 432?

```
H T O
    4 3
    \ 2 1 = 2
```

REF: MK Bk 4 pg 20

Learning MTC Bk 4 pg. 6

Primary Science MTC Bk 4 pg. 8

Week three lesson four.

Application of values and place values

Example:

Find the sum of the value of 2 and 3 in the number 623.

What is the sum of the place value of 6 and 2 in the number 632?

Find the product of the value of 2 and place value of 3 in 362.

The place value of 2 is tens. What is its value.

```
Value = Digit x Place value
    = 2x10
    = 20
```


Week three lesson five.

Writing whole numbers in words(Review)-up to thousands

1. Write 6438 in words.

Thousands	Hundreds	Units
6	4	38

$6438 \rightarrow$ Six thousand four hundred thirty eight.
2. Write 14,008 in words

Thousands	Hundreds	Units
14	0	08

$14,008 \rightarrow$ Fourteen thousand eight.
3. Express 240,402 in words

Thousands	Hundreds	Units
240	4	02

$240,402 \rightarrow$ Two hundred forty thousand four hundred two.

REF: MK Bk 4 pg. 22
Learning MTC Bk 4 pg. 6
Understanding MTC Bk 4 pg. 11

Week four lesson one.

Writing in figures(Review)
Write "three thousand six hundred in figures".

Three thousand 3000
Six hundred $\quad+600$
$\underline{3600}$

Write in figures; "Sixty thousand five hundred twenty.

Sixty thousand	60000
Five hundred	500
Twenty	$+\quad 20$
	$\underline{60,520}$

REF: Understanding MTC bk 4 pg 13
Primary School MTC BK 4 PG 8
Learning MTC bk 4 pg 6
MK Bk 4 pg 23

Week four lesson two.
 Writing numerals in expanded form(Review)

Expand 3485 using place values
$3485=(3 \times 1000)+(4 \times 100)+(8 \times 10)+(5 \times 1)$

Expand 3485 using values
$3485=3000+400+80+5$

Expand: 46,246
$46,246=40,000+6000+200+40+5$

REF: - MK Bk 4 pg 23

- Learning MTC Bk 4 pg 6
- Understanding MTC Bk 4 pg 14

Writing the expanded numbers in short. (Review)

Find the number which has been expanded to get;

1. $4000 \times 200 \times 40 \times 7$

$$
\begin{array}{r}
4000 \\
200 \\
\quad 40 \\
+\quad 7 \\
\hline 4347 \\
\hline
\end{array}
$$

2. $(5 \times 100)+(6 \times 1000)+(4 \times 1)$
$500+6000+4$
6000
500
$\begin{array}{r}4 \\ +\quad 4 \\ \hline 6504\end{array}$
3. $(9 \times 10000)+(4 \times 1000)+(7 \times 10)$
$90000+4000+70$
90000
4000
70
$+\quad 7070$
94070

REF: - Learning MTC Bk 4 pg 6

- Understanding MTC bk 4 pg 4

Week four lesson three.

ROMAN NUMBERALS (Review) - up to one hundred.

Basic Roman Numerals are;
$1=\mathrm{I}$
$50=\mathrm{L}$
$1000=\mathrm{M}$
$5=\mathrm{V}$
$100=\mathrm{C}$
$10=\mathrm{X}$
$500=\mathrm{D}$

Roman numerals from 1 to 1000

Hindu Arabic	Roman numeral	Hindu Arabic	Roman numeral
1	I	8	VIII
2	II	9	IX
3	III	10	X
4	IV	50	L
5	V	100	C
6	VI	500	D
7	VII	1000	M

Week four lesson four.

Roman numerals got by repeating 1 and $\mathbf{X ;}$
Examples: $2=1+1 \quad=\quad$ II

$20=10+10=\mathrm{XX}$
$30=10+10+10=\mathrm{XXX}$
$300=100+100+100=C C C$

Roman numerals got by adding.

$6=5+1$
$7=5+2$
$=\mathrm{V}+\mathrm{I}=\mathrm{V}+\mathrm{II}$
$=\quad \mathrm{VI}$
$=\quad$ VII

60	$=50+10$
	$=\quad \mathrm{L}+\mathrm{X}$
	$=\mathrm{LX}$

$$
\begin{aligned}
700 & =500+200 \\
& =D+C C \\
& =D C C
\end{aligned}
$$

Roman numerals got by subtracting from 5, 50, 100, 500 and 1000:
$4=(1$ subtracted from 5)
$=$ IV
$40=(10$ subtracted from 50)
$=\quad \mathrm{XL}$
$90=(10$ subtracted from 100)
$=\quad \mathrm{XC}$
$400=(100$ subtracted from 500)
$=\quad \mathrm{CD}$
$900=(100$ subtracted from 1000 $)$
$=\quad \mathrm{CM}$

REF: MK Bk 4 pg 32
Primary MTC for Uganda Bk 4 pg 14-17

Week four lesson five.

Expressing Roman numerals into Hindu Arabic numbers.
Convert the following to Hindu Arabic numerals:

1. XIV
$=\quad \mathrm{X}+\mathrm{IV}$
$=\quad 10+4$
$=14$
2. XXXIX $=\quad \mathrm{XXX}+\mathrm{IX}$
$=\quad 30+9$
$=39$
3. XLV
$=\quad \mathrm{XL}+\mathrm{V}$
$=\quad 40+5$
$=45$
4. XCVIII $=\quad \mathrm{XC}+\mathrm{VIII}$
$=\quad 90+8$
$=98$
5. DCCVII $=\quad \mathrm{DCC}+\mathrm{VII}$
$=700+7$
$=\quad 707$
REF: - MK Bk 4 pg 34

- Primary MTC for Uganda Bk 4 pg 17

Topical questions:
MK Bk 4 pg 35

Week five lesson one.

OPERATION ON NUMBERS

Addition:

Words used in addition include; Sum, Total, Increase, Altogether, Add, e.t.c.

Examples:

1. Find the sum of;
a) 7464 $\begin{array}{r}7425 \\ +4889 \\ \hline\end{array}$
b) $\quad 146708$
$+\quad 52614$
2. There are 469 goats, 943 cows and 6401 chicken on the farm. How many animals are there altogether?

$$
\begin{array}{r}
469 \\
943 \\
+6401 \\
\hline 7813 \\
\hline
\end{array}
$$

$\therefore \quad$ There are 7813 animals altogether.

REF: - Primary MTC for Uganda Bk 4 pg 23

- MK Bk 4 pg 38
- Primary School MTC bk 4 pg 14

Week five lesson two.

Subtraction of wholes

Words used include; Reduce, Decrease, Difference, e.t.c.

1. Subtract:
a) 8432
b) $\quad 532867$ $\begin{array}{r}84732 \\ -\quad 3700 \\ \hline\end{array}$
$-\begin{array}{r}314658 \\ \hline 218209\end{array}$
2. Subtract 94 from 342 .

$$
342
$$

$\begin{array}{r}-\quad 94 \\ \hline 248\end{array}$
3. What is the difference of 143 and 36 ?

143
$-\quad 36$
107

4. Okot had Shs. 630. He bought a toy car for Shs. 560. How much money remained?

Sh. 630

- Sh. 560

Sh. 070

REF: - Primary MTC Bk 4 pg 30

- Primary MTC for Uganda bk 4 pg 20-32
- Understanding MTC Bk 4 pg 18-25

Week five lesson three.

Multiplication of wholes.

Multiplying of a $3 / 2$ digit number by 1 digit number.

1. $\begin{array}{r}13 \\ \times \quad 2 \\ \hline 26 \\ \hline\end{array}$
2. $\begin{array}{r}43 \\ \times \quad 4 \\ \hline \mathbf{1 7 2} \\ \hline\end{array}$
3. 120
$\mathrm{x} \quad 5$
600

REF: Primary MTC for Uganda bk 4 pg 36
MK Bk 4 pg 46

Multiplying numbers by 10 and 20.

2. | 42 | 2. | 54 | 3. |
| ---: | ---: | ---: | ---: |
| $\mathbf{x 1 0}$ | $\underline{\mathbf{1 0}}$ | 32 | |
| $\mathbf{4 2 0}$ | $\underline{\mathbf{5 4 0}}$ | $\underline{\mathbf{6 4 0}}$ | |

REF: MK bk 4 pg 50

Multiplying 2-digit numbers by 2 digit numbers

1. 13	OR;		13	
x 12			$12 \rightarrow$	+ 2
026			(13 x 10)	(13 x 2)
130			30	26
156		130		
		+26		
		156		
2. 45		45		
$\times 12$			$12 \rightarrow$	$10+2$
090			45×10	450
450			45×2	+90
540				540

Multiplying using lattice method:
e.g. $\quad 13 \times 12$

$=156$

REF: Primary MTC for Uganda bk 4 pg 40 MK Bk 4 pg 50 Understanding MTC BK 4 pg 26-30

Week five lesson four.

MULTIPLICATION OF NUMBERS ON A NUMBERLINE

E.g.

1. 3 x 4

$=12$
2. 4×3

Week five lesson five.

Divisions of 3 digit numbers by one digit
Use of long division
Exp: $1468 \div 2$

$$
\begin{aligned}
& \begin{array}{r}
234 \\
2 \\
2 \times 2=\frac{4}{468} \\
06 \\
2 \times 3= \\
06 \\
4 \times 2= \\
\frac{0}{0} 88 \\
00
\end{array}
\end{aligned}
$$

Exp: 2 Share 570/= among 5 girls

114	
	570
$1 \times 5=5$	
	07
$1 \mathrm{x} 5=05$	
$\underline{\underline{2}} 0$	
$4 \times 5=$	20
- ${ }^{\text {a }}$	

x	2
0	0
1	5
2	10
3	15
4	20
5	25
6	30
7	35
8	40
9	45

$=114$
DIVISIBILITY TEST
Divisibility test of 2 :
A number is divisible by 2 when the last digit is even.
e.g. $50,22,94,108$, etc.

Divisibility test of 3:

A number is divisible by 3 when the sum of digits is divisible by 3 .
e.g. a) 21
$=\quad 2+1$
$=\quad 3$
$=\quad 3 \div 3$
$=1$
b) 144
$=\quad 1+4+4$
$=\quad 9$
$=\quad 9 \div 3$
$=3$

Divisibility test of 5 :

A number is divisible by 5 when the last digit is 5 or 0 .
e.g. 95, 240,

Week six lesson one.
INTRODUCTION OF COMBINED OPERATION USE BODMAS

B - Brackets
O - Of
D - Division
M - Multiplication
A - Addition
S - Subtraction

Exp. 1. Work out: 4+1-2
$=(4+1)-2$
$=5-2$
$=3$
2. Simplify: $4+2+5$
$=\quad 4+(2 \times 5)$
$=4+10$
$=14$

Week six lesson two.

Properties of zero:

1. 0×0
$=0$
2. Zero multiplied by any number gives 0
i.e.
0×25
$=0$
$\mathrm{kx} 0=0$
7×0
$=0$
3. Zero added to any number gives the number to itself.
i.e.

$$
\begin{aligned}
& 0+40=40 \\
& 8+0=8
\end{aligned}
$$

4. Any number to the power of zero gives one.
i.e. $\quad \begin{array}{rll}40 & =1 \\ 100^{\circ} & =1\end{array}$
5. Zero divided by any number gives zero.

i.e. | $0 \div 5$ | $=$ | 0 |
| :---: | :--- | :--- |
| $\underline{0}$ | $=$ | 0 |

Properties of one:

1. Any number multiplied by one give the number itself.

i.e. \quad| 1×20 | $=20$ |
| :--- | :--- |
| $y \times 1$ | $=y$ |
| 0×1 | $=$ |

2. Any number divided by one except zero gives the same number.
i.e.

Week six lesson three.

Magic square:

Identify the sum or magic number

Exp. Given the magic square below, find the values of the letters.

6	a	8
b	5	c
2	d	4

$$
\begin{aligned}
\text { Magic number } & =2+5+8 \\
& =15 \\
\mathrm{a} & =15-(8+6) \\
& =15-14 \\
& =1
\end{aligned}
$$

Week six lesson four.

ARRANGING NUMBERS IN ASCENDING OR DESCENDING ORDER.

Ascending order (from small to big)

1. $10,25,8,125$
$8,10,25,125$
2. $75,38,146,238$
$38,75,146,238$

Descending order (from big to small)

1. $68,29,180,140$

180, 140, 68, 28
2. $758,587,857,875$

875, 857, 758, 587

Week six lesson five.

FORMING NUMBERS FROM GIVEN DIGITS UP TO THOUSANDS

Examples:

1. $1,3,2$

123, 132, 213, 231, 312,321
2. $2,5,1,4$:

Find the smallest and highest number formed. $1245,1254,1425,1452,1524,1542,5421$,

The smallest is 1245
The highest is 5421

Week seven lesson one.

Estimating numbers

Examples to tens:

1. $23 \approx 20$
2. $46 \approx 50$
3. $125 \approx 130$

Examples to hundreds:

1. $142 \approx 100$
2. $361 \approx 400$
N.B. Use a number line.

Week seven lesson two.
 Rounding off:

1. Round off to the nearest tens:
a) 47
T O
47
$+10$
$50 \quad 47 \approx 50$
b) 63

$$
\begin{array}{r}
\mathrm{TO} \\
63 \\
+\underline{00} \\
\underline{60} \quad \underline{63 \approx 60}
\end{array}
$$

2. Round off to the nearest hundreds.
a) 349
H T O
349
300
+300
300
$349 \approx 300$
b) 473
H T O
473
$+100$
500

Week seven lesson three.

INTRODUCTION TO POWERS / INDICES

Using the formula for area of a square:
e.g. $\mathrm{A}=5 \times 5$
a) $4^{2}=4 \times 4$
$=16$
b) $10^{2}=10 \times 10$
$=100$
c) $3^{2}=3 \times 3$
$=\quad 9$
d) $\begin{aligned} 5^{2} & =5 \times 5 \\ & =25\end{aligned}$

Week seven lesson four.

NUMBER PATTERNS AND SEQUENCE

A multiple is a product got after multiplying factors.
6 is a multiple of 2 since $2 \times 3=6$ where 2 and 3 are factors.

18 is a multiple of $1,3,6,9$ and 2 since

1×18	$=$	18
2×9	$=$	18
3×6	$=$	18

List down all the multiples of 5 less than 27 .
M5 $=(1 \times 5),(2 \times 5),(3 \times 5),(4 \times 5),(5 \times 5)$
$\begin{array}{llllll}= & 5 & 10 & 15 & 20 & 55\end{array}$
.$:$ M5 $=\quad\{5,10,15,20,25\}$
REF: Learning MTC bk 4 pg
MK Bk 4 pg 67

Week seven lesson five.

Finding the Lowest Common Multiples

1. List down 7 multiples of 6 and 3

M6 $=\{6,12,18,24,30,42 \ldots\}$
M3 $=\{3,6,9,12,15,18,21\}$
2. Find the Common multiples from the above set of multiples.
3. Find the L.C.M. of 3 and 6

The L.C.M of 3 and 6 is 6

REF: MK Bk 4 pg 67

Understanding MTC bk 4 pg 101
Learning MTC Bk 4 pg 19

Week eight lesson one.

FACTORS

Example

1. List down all the factors of 6 .

$1 \times 6 \uparrow$
1×3 2×3
$=6$
$\mathrm{~F}_{6}$

2. List down all the factors of 12 .
$\left.\begin{array}{lll}1 \times 12 \\ 2 \times 6 \\ 2 \times & = & 12 \\ 3 \times 4\end{array}\right)=12$
$\mathrm{F}_{12}=\quad\{1,2,3,4,6,12\}$
3. List down all the factors of 48.

$$
\begin{aligned}
{\left[\begin{array}{l}
1 \times 48 \\
2 \times 24 \\
3 \times 16 \\
4 \times 12 \\
6 \times 8
\end{array}\right.} & = \\
= & 48 \\
F_{12}= & =48 \\
& \{1,2,3,4,6,8,12,16,24,48\}
\end{aligned}
$$

REF: MK Bk 4 pg 73

Week eight lesson two.

GREATEST COMMON FACTORS

Find the G.C.F. of 12 and 15

G.C.F. $=3$

REF: MK Bk 5 pg 82

Week eight lesson three.

TYPES OF NUMBERS

1. Whole numbers

These start from 0 : $\{0,1,2,3,4,5,6,7 \ldots \ldots$.
2. Counting numbers

Start from one: $\{1,2,3,4,5,6,7,8 \ldots$,
3. Even numbers

These are numbers which are exactly divisible by 2 or a number when divided by 2 leaves 0 as a remainder.
\{2,4,6,8,10 \qquad ...\}
N.B. The first even number is 2 .

REF: MK Bk 4 pg 60

Supplementary MTC Bk 4 pg
Learning MTC Bk 4 pg 17
4. Odd numbers

These are numbers which are not exactly divisible by 2 or when divided by 2 leave a remainder as one.

Example: $\{3,5,7,9,11,13,15,17, \ldots \ldots \ldots\}$
5. Prime numbers

A prime number is a number which has only two factors, that is, one and itself.

Prime numbers less than 50 are:
$\{2,5,7,11,13,17,19,23,29,31,37,41,43,47\}$
6. Composite numbers

These are numbers that have more than two factors.
Example: $\{4,6,8,9,10,12,14,15, \ldots \ldots$.

[^0]
Week eight lesson four.

 SEQUENCE1. What is the next number in the sequence?

i.e. 18
$+4$
2. What is the next number in the sequence?

i.e. 12
$-\frac{3}{9}$
3. Find the missing number.
$2,3, \quad 5, \quad 7, \quad 11 \quad$ (Prime numbers)
4. Find the missing number;
$64,32,16,8$, \qquad
5. Find the next number.
$1,3,9,27$, \qquad

REF: Understanding MTK Bk 4 pg 38

Week eight lesson five.
 GEOMETRY

Drawing line segments using rulers.

LINES

A line is a set of points illustrated as

Ray
A ray is a line with one end point.

A line segment has two end points.
A line segment is named by its end points

Parallel lines

Parallel lines are lines which do not meet.

They have the same distance apart at every point.

REF: MK BK 5 PG 175

Week nine lesson one.

Naming lines, rays and line segments.

Lines are named according to the points through which they pass.

Drawing rays and lines

Example

Draw ray $A B$

Draw line CD

Week nine lesson two.

Drawing line segments of given length

Instruments to use:

- A sharp pencil
- A ruler
- A pair of compasses

Example:

Draw a line segment of length 3 cm .

Procedure:

- Draw a line of any length
- Mark a point at the beginning of the line.
- Place a ruler on the marked point such that the point is marked " 0 " cm on t he ruller is a marked point on the paper.
- Measure 3 cm .

Measuring line segments

Instruments used:

- Ruler

Example:

Measure line $A B$

Procedure:

- Place the ruler at A such that the point marked 0 cm is at point A .
- Take the reading which corresponds with point B,
i.e.,
- $\mathrm{AB}=5 \mathrm{~cm}$

REF: Understanding MTC Bk 4 pg 7

Week nine lesson three.

Drawing and naming quadrilaterals.

These are 4 sided figures e.g. squares, rectangles, rhombus, parallelograms, kites, trapeziums, etc.

2. Rectangle

- It has 4 sides
- Opposite sides are equal
- Has two lines of symmetry

3. Rhombus

- It has 4 equal sides
- It has 2 lines of symmetry.

4. Parallelogram

5. Trapezium

6. Kite

REF: MK BK 5 pg 184
Understanding MTK bk 4 pg

Week nine lesson four.

Parts of a circle.

PK	-	Chord
XO	-	Radius
XY	-	Diameter
Shaded part-	Sector	
Dotted part -	Quadrant	

Week nine lesson five.

1. Finding diameter when radius is given.
$\mathrm{D}=\mathrm{r} \times 2$
e.g. Find the diameter of circle whose radius is 5 cm

$$
\begin{aligned}
\text { Diameter } & =\mathrm{r} \times 2 \\
& =5 \mathrm{~cm} \times 2 \\
& =10 \mathrm{~cm}
\end{aligned}
$$

2. Finding radius when diameter is given.

R =
D $\div 2$
e.g. Find the radius of circle whose diameter is 14 cm Radius

$=$	$\mathrm{D} \div 2$
$=$	$14 \mathrm{~cm} \div 2$
$=$	7 cm

Week ten lesson one.

3. Drawing circles using a ruler and a pair of compass.

Exp. Construct a circle of radius 3 cm .

- Draw a line and mark a point to be the centre of the circle.
- Open the compass to radius of 3 cm .
- Draw a circle round the centre.

Week ten lesson two.

Types of angles:

1. Acute angle:

It is an angle which measures between 0° and 90°.
e.g. $30^{\circ}, 45^{\circ}, 15^{\circ}, 89^{\circ}$, etc.
2. Right angle:

It is an angle measuring exactly 90°.

3. Obtuse angle.

It is an angle which measures more than 90° but less than 180°.
4. Reflex angle.

It is an angle which measures more than 180° but less than 360°.
e.g. $185^{\circ}, 240^{\circ}, 350^{\circ}$, etc.

REF: MK BK 5 pg 193.

Week ten lesson three.

Drawing and measuring angles using a protractor.

1. Using outer scale.

Procedure:

- Draw a line
- Mark a point on the line
- Place the protractor such that its centre is on the point marked on the line.
- Take the reading starting from zero clockwise.

2. Using inner scale.

Procedure:

- Draw a line
- Mark a point on the line
- Place the protractor such that its centre is on the point marked on the line.
- Take the reading starting from zero anticlockwise.

REF:
MK Mathematics Bk 5 pg 195
Understanding MTC BK 4 pg 87.

[^0]: REF: Supplementary MTC bk 4 pg

