

This document is sponsored by The Science Foundation College Kiwanga- Namanve Uganda East Africa Senior one to senior six +256 778 633 682, 753 802709

gital Teachers

Narture your dreams

Dr. Bhosa Science Based on, best for sciences

Equilibrium between immiscible liquids

Distribution Law:

States that a solute distributes itself between immiscible solvents such that a constant temperature and pressure the ratio of its concentrations in the two solvents is constant at a given temperature

That is,

If C is the solute, and A and B are the immiscible solvents, them

$$\frac{[C]in A}{[C]in B} = constant or partition coefficient$$

Limitations

- Solute should be in the same molecular state in both solvents
- Temperature should be constant
- None of the solvent should be saturated / solutions should be dilute.

Definition

Partition Coefficient or distribution constant is ratio of the concentration of the solute in immiscible solvents at equilibrium.

Experiment to determine partition coefficient

- By finding the ration of concentrations of a solute in one solvent over the concentration a solute in another immiscible solvent at equilibrium.
- The concentration of a solute in a solvent may be obtained by titration or other reliable method.

Application of distribution laws

1. Extraction of organic compound

Example 1

A solution of 6g of a substance X in 50cm³ of aqueous is in equilibrium at room temperature with an ethereal solution of X containing 108g of x in 100cm³.

Calculate the mass of x that could be extracted by shaking 100cm³ of an aqueous solution containing 10g of X with:

100cm³ of ether (i)

(ii) 50cm³ of ether twice at room temperature.

Solution

First determine the partition constant Kd

$$Kd = \frac{concentration \ of \ x \ in \ ether}{concentration \ of \ x \ in \ water}$$

$$Concentration = \frac{mass}{volume}$$

$$\frac{108}{volume}$$

$$\Rightarrow Kd = \frac{\frac{108}{100}}{\frac{6}{50}} = 9$$

(i) Let the mass of X extracted be K gMass of X left in aqueous solution = (10 –K) g

Kd = 9 =
$$\frac{\frac{K}{100}}{\frac{(10-K)}{100}}$$
; thus mass of X , K extracted = 9g

(ii) Let the mas of X extracted by the first 50 cm³ portion of ether be q g Mass of x left in aqueous layer = (10 - q) g

Kd = 9 =
$$\frac{\frac{q}{50}}{\frac{(10-q)}{100}}$$
; q = 8.2 g

Mass of X left in water = 1 - 8.2 = 1.8g

Let the mass of X extracted by the second 50cm3 portion be p g Mas of x left in water = (1.8 - p) g

Kd = 9 =
$$\frac{\frac{p}{50}}{\frac{(1.8-p)}{100}}$$
; p = 1.5 g

Total mass of X extracted by 50cm^3 of ether twice = q + p = 8.2 + 1.5 = 9.7g

2. Study of complexes

- The moles of a ligand that forms a complex with a metal ion = to the total moles of ligand in aqueous solution moles of ligand that did not form a complex
- The mole of a ligand that did not a complex can be found partition coefficient, Kd
- The moles of ligand that form a complex per mole of a metal cation is obtained by division of the moles that formed a complex by the moles of metal ions

Example 2

Excess ammonia was shaken with equal volume of trichloromethane

And a 0.05M aqueous solution of copper (II) ions to form a complex $(Cu(NH_3)_n]^{2^+}$. At equilibrium, the concnentrations of ammonia in the trichloromethane and in the aqueous layer were 0.021moll⁻¹ and 0.725moll⁻¹ respectively.

(the partition coefficient, KD, of ammonia between water and trichloromethane is 25)

Calculate:

- (i) The concentration of free ammonia in aqueous layer
- (ii) The concentration of ammonia that formed the complex with copper ions
- (iii) The values of n in the complex

(i) From Kd =
$$\frac{[free\ ammonina]in\ water}{[ammonia]in\ chloroform}$$
$$25 = \frac{[free\ ammonina]in\ water}{0.021}$$

Free ammonia in water = 25 x 0.021 = 0.525

(ii) Ammonia that formed a complex with copper ion = total ammonia in water – free ammonia = 0.725 - 0..525

(iii)
$$n = \frac{\text{moles of ammonia that formed a complex with copper ions}}{\text{moles of copper ions}}$$
$$= \frac{0.2}{0.05} = 4$$

3. Chromatography.

Exercise

1.	(a)	(i)	Define the term " partition coefficient" and state conditions under which it is valid	(3marks)
		(ii)	Briefly describe how the partition coefficient for the distribution of	(5marks)
			iodine between water and trichloromethane can be determined	
	(b)	(i)	60cm ³ of an aqueous solution containing 0.3g of compound Y was	
			shaken with 30 cm ³ of ethoxyethane and a mixture allowed to stand.	
			Calculate the mass of Y which was extracted into the ethoxyethane	
			layer. (the partition coefficient of Y between ethoxyethane and water is 4.7	
		(ii)	The aqueous solution in (i) was extracted with two successive 15cm ³	(6marks)
			of ether. Calculate the mass of Y that was extracted by ether.	
	(c)		The table below shows the result of partition of aminoethane	
			between trichloromethane and o.1M copper (II) sulphate solution	
			[CH ₃ NH ₂ (0.1MCuSO ₄)] 0.87 1.10 1.33 1.57 1.80	
			[CH ₃ NH ₂ (CHCl ₃)] 0.02 0.03 0.04 0.05 0.06	
		(i)	Plot a graph of [CH ₃ NH ₂ (0.1MCuSO ₄)] against [CH ₃ NH ₂ (CHCl ₃)]	
		(ii)	Determine the number of moles of aminoethane that formed a	
			complex with copper II ions	
		(iii)	Write equation for the reaction between copper II ions and	
			aminoethane.	
2.			100cm ³ of a solution containing 0.171g of ammonia in	(3marks
			trichloromethane was shaken with 10cm ³ of water until equilibrium	
			was attained at room temperature. Calculate the number of moles	
			of ammonia in trichloromethane layer. (the partition coefficient of	
			ammonia between water and trichloromethane at room	
3.			temperature is 27.5) A copper ore was dissolved in excess concentrated ammonia and the	6marks)
J.			solution made up to 1dm ³ . The resultant solution was shaken with	Ulliai KS)
			1dm ³ of trichloromethane and left to settle. 50cm ³ of the organic	
			layer needed 25.0cm ³ of 0.05M hydrochloric acid for neutralization.	
			25cm ³ of the aqueous layer was neutralized by 40cm ³ of 0.5M	
			hydrochloric acid.	
			Calculate the concentration of copper II ions in molesdm ⁻³ . (the	
			distribution coefficient of ammonia between water and	
			trichloromethane is 25.	

4			The graph shows the distribution of ammonia between aqueous layer of 0.1M copper (II) ions and chloroform 2 1.8 1.6 (bg)(1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 0 0.02 0.04 0.06 0.08 [NH ₃ (CHCl ₃ (aq)) mol ⁻¹	
			[NH3(CHCI3(aq)) HIDI	
	(a)	(i)	Determine the distribution coeficient, K_D of ammonia between aqueous copper (II) ions and chloroform.	(3marks)
		(ii)	State what the value you have detrmine indicates about the	(2marks)
	(b)		distribution of ammonia.	
	(b)		The graph does not pass through the origin because ammonia with copper (II) ions	
		(i)	Dertermine the number of moles of ammonia that reactionweith one mole copper (II) ions.	(2 ½ marks)
		(ii)	Write equation for the reaction between ammonia and copper II ion	1 ½ marks)
5	(a)	, ,	State	
		(i)	The distribution (partition) law	(3 ½ marks)
		(ii)	The condition under which the distributionlaw is valid	(1 ½ marks)
	(b)		100cm ³ of an aqueous solution containing 10g of a compound Q was shaken with 100cm ³ of benzene. Q is more soluble in benzene and the partion coefficient of Q between benzene and water is 12.2 Calculate the mass of Q left in aqueous layer	
	(c)		State one application of partion of solutes	(1mark)
6			100cm ³ of an aqueous solution containing 20 g of W was shaken with 50cm ³ of ether.	
	(a)		Calculate the massof W extracted by ether	(2marks)
			(the partition coefficient, K _D of W between ether and water is 4)	
	(b)		Calcualte the mass of W that would be extracted by shaking the	(4marks)
<u> </u>	/ \		solution twice with 25cm³ of ether	(2)
7	(a)		State distribution law	(2marks)
	(b)		Describe how the distribution coefficient of butane-1,4-dioic acid	(5marks)
	(c)		(succinic acid) between water and ethoxyethane can be determined. 100cm³ of a solution contains 30g of substance Z. calculate the mass	
	(c)		of Z that can be extracted by shaking the solution with:	
<u> </u>	1	1	or 2 that can be extracted by shaking the solution with.	

	(i)	100cm ³ of ethoxyethane	(03marks)
	(ii)	Two 50cm ³ portion of ethoxyethane	(05marks)
		(the distribution coefficient of Z between ethoxyethane and water is	
		5)	
(d)		Briefly describe how the distribution law can be used to determine	(05mark)
		the formula of the complex formed between copper (II) ion	
		ammonia	

Suggested answer

- 1 (a)(i) Partition Coefficient or distribution constant is ratio of the concentration of the solute in immiscible solvents at equilibrium.
 - (ii) Equal volumes of iodine solution and trichloromethane are mixed and left to stand in order to establish an equilibrium
 - The layers are separated by a separating funnel and the concentration of iodine in each layer is determined by titration with standard sodium thiosulphate solution using starch indicator

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

 $I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^-(aq) + S_4O_6^{2-}(aq)$ Partition coefficient Kd = $\frac{[NH_3] \text{ in water}}{[NH_3] \text{ in trichloromethane}}$

(b) (i) 0.21g

(ii)0.23g

a graph of [CH3NH2(0.1MCuSO4)] against [CH3NH2(CHCl3)] (c)(i)

(ii) Moles of methylamine that formed a complex with copper ion = intercept = 0.4

Moles of methylamine that formed a complex per mole of copper ion = $\frac{0.4}{0.1}$ = 4

(iii)
$$Cu^{2+}(aq) + 4CH_3NH_2(aq) \rightarrow [Cu(CH_3NH_2)_4]^{2+}(aq)$$

2. 0.0027 moles

3. Moles of ammonia in 1000cm3 of organic layer

50 cm³ of organic layer contains the same number of moles of ammonia = moles HCl

$$=\frac{25 \times 0.0}{1000}$$

1000cm³ of organic layer contain =
$$\frac{25 \times 0.05}{1000} \times \frac{1000}{50}$$
 0.025 moles

Moles of ammonia in 1000cm³ of water

25 cm³ of organic layer contains the same number of moles of ammonia = moles HCl

$$=\frac{40 \times 0.5}{1000}$$

1000cm³ of organic layer contain =
$$\frac{40 \times 0.5}{1000} \times \frac{1000}{25}$$
 0.8 moles

Moles of non complexed ammonia = Kd x moles of ammonia

$$= 25 \times 0.025$$

Moles of ammonia that formed a complex with copper ions = 0.8 - 0.625

Moles of
$$Cu^{2+}(aq) = \frac{0.175}{4} = 0.044 \text{ moldm}^3$$
.

4. (a) (i)
$$kd = slope = 25$$

- (ii) ammonia is 25 times soluble in water than in trichloromethane
- (b) (i) 4 [intercept/mole of copper ions]

(ii)
$$Cu^{2+}(aq) + 4NH_3(aq) \rightarrow [Cu(NH_3)_4]^{2+}(aq)$$