Polymerization

A polymer is a high molecular mass species consisting of a regular repeating units or chemically similar units, linked by primary covalent bonds.

Polymerization is the process by which high molecular mass species are formed many chemically similar units called monomers.

Types of polymerization.

- 1. Addition polymerization: monomers add one to each other to form polymers without loss of any molecule.
 - a. Alkenes undergo addition polymerization to form polyalkenes

$$nCH_2 = CH_2 \xrightarrow{*} CH_2CH_2 \xrightarrow{\mid_n} *$$
 ethene polyethene

Other common polyalkenes are:

Monomer	Structure	Name of the polymer
Vinyl monomers		
Propene	CH ₃ CH=CH ₂	Polypropene
Vinylchloride	CH₂=CHCI	Polyvinylchloride (PVC)
Vinylacetate	CH ₂ =CHOCOCH ₃	Polyvinylacetate
Styrene	CH ₂ =CH-	Polystyrene
acrylonitride	CH ₂ =CHCN	Polyacrylonitride
Acrylic monomers		
Acrylic acid	CH₂=CHCOOH	Polyacrylic acid
Methylacrylate	CH ₂ =CHCOOCH ₃	Polymethylacrylate
butylacrylate	CH ₂ =CHCOOC ₄ H ₉	Polybutylacrylate
Methacrylic acid	CH ₂ =C(CH ₃)COOH	Polymethacrylic acid
Methylmethacrylate	CH ₂ =C(CH ₃)COOCH ₃	Polymethylmethacrylate
Ethylmethacrylate	CH ₂ =C(CH ₃)COOC ₂ H ₅	Polyethylmethacrylate
Acrylamide	CH ₂ =CHCONH ₂	Polyacrylamide

b. Conjugated dienes undergo addition polymerization to form polydienes. Examples

1.
$$CH_2 = CH - CH = CH_2$$

$$* \left\{ CH_2 - CH = CH - CH_2 \right\}_n^*$$
1. 3-butadiene

2.
$$CH_2 = C - CH = CH_2$$
 CH_3

Isoprene

* $CH_2 - C = CH - CH_2$
 CH_3
 CH_3

2. Condensation polymerization is formation of big molecules called polymers from small molecules called monomers accompanied by loss of small molecules such as water, ammonia e.t.c

Examples

1.
$$nCH_2$$
 — $CH_2 + nCH_3OOC$ COOCH₃ — H^* — OCH_2CH_2OC C — CH_3OCH_3 OO O Polyster

$$\begin{array}{c|c} & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Thermoplastic and thermosetting polymers

Thermoplastic polymers are polymers that soften and can be remolded on heating, e.g. polyethene.

Thermosetting polymers are polymers that cannot be remolded on heating. E.g. phenolic and epoxy resins.