LINEAR SCALE FACTOR, AREA SCALE FACTOR, AND VOLUME

 SCALE FACTOR.Linear scale factor (L.S.F)
Two plane figures or two solids are called similar if all corresponding angles are equal and if the ratio of any two corresponding lengths is constant.

The constant is called the linear scale factor. The linear scale factor is the ratio of any two corresponding lengths of similar figures.

A and B are two similar figures. The lengths of sides of figure B are twice the length of the corresponding sides of figure A.
\therefore L.S.F $=\frac{4}{3}=\frac{2}{1}=2$

Area Scale factor (A.S.F)

Area of $A=2 \times 3=6$ square units
Area of $B=6 \times 4=24$ square units
Ratio of their areas $=24: 6=2^{2}$

This is linear scale factor squared.
Let us consider rectangle A and similar rectangle C.

L.S.F $=\frac{3 k}{3}=\frac{k}{1}=k$

Area scale factor $=\frac{3 k \times 2 k}{3 \times 2}=k^{2}$
Note: if the L.S.F of two similar figures is k, then the area scale factor is k^{2}.
This rule applies to all similar figures.
In each of the following three examples, the two figures are similar.

Example:1

Area of parallelogram $A B C D$ is $5.5 \mathrm{~cm}^{2}$. Find the area of EFGH

Solution:

L.S.F $=\frac{H G}{D C}=\frac{5}{2.5}=\frac{2}{1}=2$
A.S.F $=(\text { L.S.F })^{2}=(2)^{2}=4$

Area of EFGH $=4 \times$ Area of ABCD

$$
\begin{aligned}
& =4 \times 5.5 \\
& =22 \mathrm{~cm}^{2}
\end{aligned}
$$

Example:2
A circle x has area of $12.0 \mathrm{~cm}^{2}$. Find the area of circle y with
i) three times this radius
ii) half this radius

Solution:

i) L.S.F $=\frac{3}{1}=3$

Area scale factor $=(3)^{2}=9$
Area of circle $Y=9 \times 12.0=108 \mathrm{~cm}^{2}$
ii) L.S.F $=\frac{1}{2} /{ }_{1}=\frac{1}{2}$

Area scale factor is $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
Area of $Y=\frac{1}{4} \times 12=3 \mathrm{~cm}^{2}$
Example:3
Find the area of the triangle $A B C$, Given the area of the triangle $A B C=150 \mathrm{~cm}^{2}$

Area scale factor $=(\text { L.S.F })^{2}=\left(\frac{2}{5}\right)^{2}$
Area of PQR $=\left(\frac{4}{25}\right)^{2} \times 150$
$=24 \mathrm{~cm}^{2}$
Map scales
Any shape on the map is similar to the actual shape on the ground. The scale of the map is the ratio of corresponding lengths (i.e. it is the linear scale factor).

A scale factor of 1:50,000 means 1 unit on the map is equivalent to 50,000 units on the ground.
L.S.F $\left(\frac{\text { map }}{\text { ground }}\right)=\frac{1}{50,000}$

Area scale factor $=\left(\frac{1}{50,000}\right)^{2}$
$\frac{\text { Area on map }}{\text { Area on ground }}=(\text { scale })^{2}=\left(\frac{1}{50,000}\right)^{2}$
Hence area of $1 \mathrm{~cm}^{2}$ on map represents an area of
$50,000 \times 50,000 \mathrm{~cm}^{2}$ on the ground.

$$
\begin{aligned}
1 \mathrm{~cm}^{2} & =50,000 \times 50,000 \mathrm{~cm}^{2} \\
& =0.5 \times 0.5 \mathrm{~km}^{2} \\
& =0.25 \mathrm{~km}^{2}
\end{aligned}
$$

Example:

The scale on a map is 1:100,000. If the area of an island on the map is $200 \mathrm{~cm}^{2}$
i) What is its actual area?
ii) What is its actual area on a map whose scale is 1:50,000?
i) Scale 1:100,000
$1 \mathrm{~cm}: 100,000 \mathrm{~cm}$
$1 \mathrm{~cm}: 1 \mathrm{~km}^{2}$
Area scale factor $=1 \mathrm{~cm}^{2}=1 \mathrm{~km}^{2}$

$$
\begin{aligned}
200 \mathrm{~cm}^{2} & =200 \times 1 \mathrm{~km}^{2} \\
& =200 \mathrm{~km}^{2}
\end{aligned}
$$

ii) Scale $=1: 50,000$

1cm: 50,000
Area scale factor $1 \mathrm{~cm}^{2}:(50,000)$

$$
1 \mathrm{~cm}^{2}=0.25 \mathrm{~km}^{2}
$$

Let the area on the map be y
$1 \mathrm{~cm}^{2}$ rep $0.25 \mathrm{~km}^{2}$
yrep $200 \mathrm{~km}^{2}$ (from (i) above)
Cross multiply
$\mathrm{y} \times 0.25 \mathrm{~km}^{2}=1 \mathrm{~cm}^{2} \times 200 \mathrm{~km}^{2}$

$$
\begin{aligned}
& y=\frac{1 \mathrm{~cm}^{2} \times 200 \mathrm{~km}^{2}}{0.25 \mathrm{~km}^{2}} \\
& \mathrm{y}=800 \mathrm{~cm}^{2}
\end{aligned}
$$

Volume scale factor
Consider two similar cuboids P and Q .

L.S.F $=\frac{4}{2}=\frac{2}{1}=2$
A.S.F $=\frac{4 \times 6}{2 \times 3}=2 \times 2=(2)^{2}=4$

This is true for each corresponding faces.
Volume scale factor (V.S.F) $=\frac{10 \times 4 \times 6}{5 \times 2 \times 3}$

$$
=2 \times 2 \times 2=(2)^{3}=8
$$

\therefore V.S.F $=(\text { L.S.F })^{3}$
In general, if L.S.F of two similar solids is K, then the V.S.F is K^{3}

Example:

Two similar cylinders are such that the height of the larger one is three times that of the smaller one. The smaller one has
surface area of $27 \mathrm{~cm}^{2}$ and volume $6 \mathrm{~cm}^{3}$.
What are the area and volume of the larger one?
Solution:
L.S.F = 3
A.S.F $=(3)^{2}=9$
V.S.F $=(3)^{3}=27$

Area of the larger one $=9 \times$ Area of smaller one
Area of the larger one $=9 \times 27=243 \mathrm{~cm}^{2}$
Volume of larger one $=27 \times$ volume of small one

$$
=27 \times 6=162 \mathrm{~cm}^{3}
$$

Example:
Two beakers of similar shapes hold $\frac{1}{4}$ litre and 2 litres respectively.
i) The smaller is 4 cm high. What is the height of the larger one?
ii) If the Larger one has surface area of $400 \mathrm{~cm}^{2}$, what is the area of the smaller one?
Solution:
i) The volumes are 2 litres and $\frac{1}{4}$ litres
V.S.F $=\frac{2}{1 / 4}=8=(2)^{3}$
L.S.F $=\sqrt[3]{V . S . F}=\sqrt[3]{2^{3}}=2$

Height of the larger one is $4 \times 2=8 \mathrm{~cm}$.
ii) A.S.F $=(\text { L.S.F })^{2}=2^{2}=4$

Area Of small one $=\frac{400}{4}=100 \mathrm{~cm}^{2}$

Exercise:

1. A 1-litre beaker is 15 cm high. Find the capacity of a 7.5 cm high similar beaker.
2. Two similar rectangular cartons have bases 10 cm long and 30 cm . The smaller has volume $1200 \mathrm{~cm}^{3}$. Find the volume of the larger one.
3. The volume of two cubes are $12.5 \mathrm{~cm}^{3}$ and $100 \mathrm{~cm}^{3}$. Find their
i) Linear ratio.
ii) Area ratio.
4. Two triangles whose bases are 7.5 cm and 2.5 cm are similar. What is the area of the smaller triangle if the larger one has area $81 \mathrm{~cm}^{2}$
5. A model of an aero plane constructed to a scale of 1:600 is 56 cm long. What is the length of the original aero plane?
6. Two similar solids have linear scale factor 3 . If the larger one has a surface area of $36 \mathrm{~cm}^{2}$ and volume of $12 \mathrm{~cm}^{3}$, what are the surface area and volume of the other?
7. On a map of scale 1:200 000, a town is represented by an area of $4 \mathrm{~cm}^{2}$. Calculate in km^{2} the area covered by the town on ground?
8. The photograph of a house actually 8 m high is 10 cm in height.
a)The front door of the house is 2.4 m high. How high is that door on the photograph?
b) If the area of a window on the photograph is $1.4 \mathrm{~cm}^{2}$, what is the area of the actual window? (Give your answer to the nearest $0.1 \mathrm{~m}^{2}$)
9. A scale model of a ship is one two-hundredth as long as the ship itself.
i) Find the height of the mast and the area of the deck of the ship if the height of the mast and the deck area of the model are 10 cm and $900 \mathrm{~cm}^{2}$ respectively
ii) If the volume of the hold in the ship is $1600 \mathrm{~m}^{3}$, find the volume of the hold in mm^{3}, in the model.

Stay Home

Stay Safe

