

This document is sponsored by
Cyardure your dreamb The Science Foundation College Kiwanga- Namanve Uganda East Africa
Senior one to senior six
+256 778633 682, 753802709
Based on, best for sciences
Distance, speed and time
Distance is a numerical description of how far apart two objects are from each other.

Speed is distance over time taken to cover the distance.

Speed $=\frac{\text { Distance }}{\text { time }}$

Example 1

Musa walked for $1 \frac{1}{2}$ hours at an average speed of 4 km per hour. What distance did he cover?
Solution
Distance covered $=$ Speed \times time $=4 \times 1 \frac{1}{2}=4 x \frac{3}{2}=6 \mathrm{~km}$

Example 2

Express 20 metres into kilometres.

$$
\begin{aligned}
& 1000 \mathrm{~m}=1 \mathrm{~km} \\
& \therefore 20 \mathrm{~m}=\frac{20 \times 1}{1000}=0.02 \mathrm{~km} \\
& \text { Hence } 20 \mathrm{~m}=0.02 \mathrm{~km}
\end{aligned}
$$

Revision exercise

1. A taxi leaves Kampala at 9:15 a.m. and reaches Mbarara Taxi Park at I2:15p.m. The same taxi leaves Mbarara at 1:30 p.m. and arrives in Kampala at 5:00p.m.

If the distance from Kampala to Mbarara is 270 km . Calculate:
a) The average speed of the taxi from Kampala to Mbarara.
b) The total time taken by taxi to make the two trips.
c) the average speed of the taxi for the two journeys
2. Cherop covers 80 cm in each step he takes when walking. He takes 100 steps per minute.
(a)How long does he take to walk a distance of 3.2 km ?
(b) What is Cherop's average speed in km per hour?
3. Gateway bus travelling at 55 km per hour took 4 hours to cover part of its journey. The rest of the journey was covered in 2 hours at a speed of 40 km per hour. Find the average speed of the bus over the whole journey.
4. A plane took $1 / 4$ of an hour to fly from A to $B 30 \mathrm{~km}$, apart. Find the speed of the plane in kilometres per hour.
5. Kintu's speed is 90 km per hour. Express this in metres per second.
6. (a) A taxi with its 14 passengers and the driver all weigh 1700 kg . If the weight of each person is 70 kg , what is the weight of the vehicle?
(b) A bus moving at a speed of 80 km per hour leaves Jinja at 8:00 a.m. for Busia and arrives there at 11:00 a.m. How far is Busia from Jinja?
7. Isingoma drives at 120 km per hour and okello drives at 100 km per hour. If they leave Town A at the same time to go to Town B 360km away, how far will Okello be from Town B when Isingoma arrives there?
8. A motorist drove from Town P to Town R via Q. study the graph below carefully and use it to answer the questions that EE follow:

b) How far is Town Q from P?
c) For how long did the motorist stay at Town Q ?
d) At what time did the motorist reach town R ?
e) What was the motorist's average speed on the whole journey?
9. The distance between Tororo and Mbale towns by road is 45 Km . On the map of Uganda the distance between the two towns is 5 cm . Find the scale of the map.
10. A bus broke down after covering $\frac{5}{7}$ of the journey. The remaining distance to complete the journey was 140 km . How long was the whole journey?
11. A motor cyclist leaves his home at 9.00a.m. for Kisoro town which is 45 Km away, riding at 16 km per hour. At 9.15a.m he gets a puncture and delays for 15 minutes. At what speed must he cover the remaining journey in order to reach Kisoro town at 10.00a.m? (Give your answer in kilometers per hour.)
12. John Akii-Bua ran 100 metres in 10 seconds. Express his speed in kilometres per hour.
13. A Gaso bus travelling from Kampala to Lyantonde at an average speed of 60 km per hour broke down after $21 / 2$ hours' drive. The repairs took 30 minutes. The bus continued with the journey at an average speed of 50 km per hour for an hour.
a) Find the distance covered by the bus.
b) Find the average speed of the bus over the whole journey.
14. Matembe drove at 60 km per hour for $21 / 2 \mathrm{hrs}$ from A to B.
a) If Matembe left town A at $1: 50 \mathrm{p} . \mathrm{m}$ at what time did he reach town B ?
b) If the cost of petrol was Shs. 1190 per litre and Matembe's car used one litre to cover 10 kilometres, find the cost of petrol for the journey.
15. Peter walked 0.15 km . What distance did he cover in metres?
16. A driver covered a distance of 120 km in $1 / 2$ hours.
(a) What was his average speed?
(b) What distance would he cover if he travelled for $23 / 4$ hours?
17. Okello had 30 km still to cover after travelling $\frac{3}{5}$ of the journey. How long was the journey?
18. The diameter of a wheel of a motorcycle is 35 cm . The motor-cycle covers 33 Km .
a) Find the number of revolutions the wheel makes to cover that journey.
b) If the motor-cycle covers 110 meters per minute, how long will the journey of 33 Km take? (Give your answer in hours).
19. A cyclist covers a distance of 21 km in 45 minutes. How long will it take him to cover 84 km ?
20. Kamoga Devis can run t metres in 45 seconds.
(a) Express his speed in kilometres per hour.
21. Mbabazi walked $3,600 \mathrm{~m}$ in 36 minutes. Find his average speed in Km per hour.
22. A man left his home at 7.00a.m riding a bicycle and arrived at his place of work 25 Km away at 9.30 am
a) Find his average speed.
b) If he left his place of work for home at 5.00 pm . Riding at an average speed of 15 Km per hour, at what time did he get home?
23. Kiyemba rode a bicycle from town A to town C through town B as follows:

He rode from A to B a distance of 30 km for 3 hours and then rested for $1 / 2$ an hour. From B, he rode to C a distance of 20 Km in $2^{1 / 2}$ hours.

On the graph given below, draw a line to show Kiyemba's movement. Also show towns B and C .

24. Mukasa's bicycle got spoilt after he had covered a distance of 20 km which was $\frac{1}{4}$ of his journey. How long was the journey?
25. John and Mary set out for a journey of 180 km . John's car consumes one litre of petrol every ten kilometres while Mary's consumes one litre every nine kilometres. If one litre of petrol costs sh 1,500 , how much more money did Mary spend?
26. a) Express $36 \mathrm{~km} / \mathrm{h}$ in metres per second.
(b) A motorist covered 200km from 9.00am to 11.00am. Calculate his average speed.
27. Joy drove from town A to town B a distance of 120 km in 2 hours. If it took her $1-\frac{1}{-}$ hourc
to drive from B to the next town C at the same speed, how far is town C from town A ?
28. Change 30 cm to metres
29. Bbosa left town P at 9.00 am and drove at 55 km per hour for 2 hours to town Q he rested for half an hour at town Q he left town Q and drove for $1 \frac{1}{2}$ hours at 40 km per hour to town R; he rested for half an hour at town R. He then left town R and drove back to town $P 75 \mathrm{~km}$ per hour
(a) Draw Bbosa`s journey on the graph provided (b) Find the average speed for the whole journey. 30. The head teacher drove from the school to town \(P\) for 3 hours at a steady speed of 60 km per hour. He left town P at 11 am and drove back to the school on the same road at a steady speed of 90 km per town hour. (a) At what time did the headmaster arrive at the school? (a) Work out the head teacher's average speed for the whole journey. (1 marks) 31. Change 12400metres to kilometers 32. Mutono left town \(X\) at 8.00 am and drove at 90 km per hour for one hour to town Y . He rested for half an hour at town \(Y\). He left town \(Y\) and drove for one hour at 70 km per hour to town Z . He rested for half an hour at town Z . He then left town Z and drove to town \(X\) at a steady speed of 40 km per hour. (a) draw Mutono`s journey on the graph provided on the next page.

(b) Work out Mutono`s average speed for the whole journey (03 marks) 33. Motor cyclist covered a distance of 42 km in \(3 \frac{1}{2}\) hours. Calculate the average speed of the journey. 34. Use the graph to answer the question that follow. a) At what time did Opio and Kato meet? (01 marks) b) What distance had Opio covered by 9:00am? c) How far from town L was Opio at 10:00a.m? d) Work out Kato's average speed for the journey he covered after resting. e) Find Kato`s average speed for his whole journey.
35. Change 2.5 metres into centimeters.
36. A boy ran a distance of 6 km in 45 minutes. What was his speed in kilometers per hour?
37. Makeba's car uses 8 litrer of petrol for every 50 km .
(a) how much petrol does he need for a journey of 325 km ?
(2marks)
(b) If litre of petrol costs shs. 2,900, how much money will he spent on petrol needed to run the car for $1 \frac{1}{2}$ hour at a speed of 50 km per hour?
38. Change 750 centimeters into metres
39. A bus covered a distance of 280 km in 3 hours and 30 minutes. What was its average speed?
40. Okidi left Kampala at 7.00a.m. driving a lorry at an average speed of $40 \mathrm{~km} / \mathrm{hr}$ for 2 hours to Jinja. He rested for one hour at Jinja, then continued to Tororo at an average speed of $50 \mathrm{~km} / \mathrm{hr}$ for another 2 hours.
41. (a) Use the above information to show Okidi's Journey on the graph below.
(b)

42. Opoka rides a distance of 2.97 km from his home to school on a bicycle. The wheel of the bicycle has a diameter of 63 cm .
(a) How many revolutions does the wheel make to cover the distance? (Take $\pi-22 / 7$)
(03m arks)
(b) If Opaka makes 50 revolutions in one minute, how long does he take to reach the school?
43. A cyclist covers 70 km in $2 \frac{1}{2}$ hours, how long will he take to cover 21 km at the same speed?
44. The table below shows how a motor cyclist travelled from town R through towns Q and S to town P.

Study and use it to answer the question that below

Town	arrival	departure
R		$9: 00 \mathrm{a} . \mathrm{m}$
Q	$9: 30 \mathrm{a} . \mathrm{m}$	$9: 42 \mathrm{a} . \mathrm{m}$
S	$10: 35 \mathrm{a} . \mathrm{m}$.	$11: 10 \mathrm{a} . \mathrm{m}$
P	$1: 30$ p. m	

a. How long motor cyclist stay at town S
(01mark)
b. Find time the motor cyclist took to travel from town R to town P (02mark)
c. If the distance from town R to town P is 180 km , calculate the average speed of the motor cyclist for the whole journey.
45. Change 10 square meters into square centimeters.
46. A school bus taking pupils to a Game park covered 75% of its journey in $1 \frac{1}{2}$ hours. The bus travelled at a steady speed of 80 km per hour. Find how the school is from the game Park. (04marks).
47. A motorist travels 64 km in 40 minutes. Find the speed of the motorist in kilometres per hour.
48. A taxi driver left town A for town B at 10:30am driving at a speed of 80 kilometres per hour.

The driver reached town B at 2:00 pm.
(a) Calculate the time taken by the driver to reach town B. (03 marks)
(b) Find the distance between town A and townB
49. A car uses 7 litres of petrol to cover 28 kilometres. How many litres of petrol can it use to cover 64kilometers?
50. Martha drove from town A to town B at a speed of 72 km per hour, town A is 90 km from town B. calculate the time she took to reach town B.

Suggested answers

1. A taxi leaves Kampala at 9:15 a.m. and reaches Mbarara Taxi Park at $12: 15$ p.m. The same taxi leaves Mbarara at 1:30 p.m. and arrives in Kampala at 5:00p.m.

If the distance from Kampala to Mbarara is 270 km . Calculate:
a) The average speed of the taxi from Kampala to Mbarara.

```
Time taken = 12:15
    - 9:15
        3:00hrs
Average speed =\frac{\mathrm{ distance travelled }}{\mathrm{ time }}=\frac{270}{3}=90\textrm{km}/\textrm{h}
```

b) The total time taken by taxi to make the two trips.
Time taken to travel from Mbarara to Kampala $=5: 00$

$=\frac{-1: 30}{}=3: 30$
Total time to and fro $=3: 00+3: 30=6 \mathrm{~h} 30 \mathrm{~min}$
c) the average speed of the taxi for the two journeys

$$
\begin{aligned}
\text { Average speed for the two journeys } & =\frac{\text { total distance }}{\text { total time }} \\
& =\frac{2 \times 270}{6 \frac{1}{2}} \\
& =83.08 \mathrm{~km} / \mathrm{k}
\end{aligned}
$$

2. Cherop covers 80 cm in each step he takes when walking. He takes 100 steps per minute.
(a)How long does he take to walk a distance of 3.2 km ?

Changing 3.2 km into centimeters	$=3.2 \times 100000$
	$=320000$
Number of steps to cover 320000	$=\frac{320000}{80}=4,000$
Time taken to cover 4000 steps	$=\frac{4000}{100}=40$ minutes

(b) What is Cherop's average speed in km per hour?

$$
\begin{aligned}
& 40 \text { minutes }=\frac{40}{60}=\frac{2}{3} \text { hours } \\
& \begin{aligned}
\text { Speed } & =\text { distance } \div \text { time } \\
& =3.2 \div \frac{2}{3}=3.2 \times \frac{3}{2}=4.8 \mathrm{~km} / \mathrm{h}
\end{aligned}
\end{aligned}
$$

3. Gateway bus travelling at 55 km per hour took 4 hours to cover part of its journey. The rest of the journey was covered in 2 hours at a speed of 40 km per hour. Find the average speed of the bus over the whole journey.

Distance $=$ speed x time
Total distance $=55 \times 4+2 \times 40$

$$
\begin{aligned}
& =220+80 \\
& =300
\end{aligned}
$$

Average speed $=\frac{\text { total distance }}{\text { total time }}=\frac{300}{(4+2)}=\frac{300}{6}=50 \mathrm{kmh}^{-1}$
4. A plane took $1 / 4$ of an hour to fly from A to $B 30 \mathrm{~km}$, apart. Find the speed of the plane in kilometres per hour.

Speed $=\frac{\text { distance }}{\text { time }}=30 \div \frac{1}{4}=30 \times 4=120 \mathrm{~km} / \mathrm{hr}$
5. Kintu's speed is 90 km per hour. Express this in metres per second.

$$
90 \mathrm{~km} / \mathrm{hr}
$$

Change km to m and hours to second

$$
=\frac{1000 \times 90}{1 \times 3600}=25 \mathrm{~m} / \mathrm{s}
$$

6. (a) A taxi with its 14 passengers and the driver all weigh 1700 kg . If the weight of each person is 70 kg , what is the weight of the vehicle?
```
Mass of 14 passenger + 1 driver = 15 x 70=1050
Mass of the taxi = 1700-1050
    =650kg
```

(b) A bus moving at a speed of 80 km per hour leaves Jinja at 8:00 a.m. for Busia and arrives there at 11:00 a.m. How far is Busia from Jinja?

$$
\begin{aligned}
& \text { Time taken }=11: 00-8: 00=3 \text { hours } \\
& \begin{aligned}
\text { Distance } & =\text { speed } \times \text { time } \\
& =80 \times 3 \\
& =240 \mathrm{~km}
\end{aligned}
\end{aligned}
$$

7. Isingoma drives at 120 km per hour and okello drives at 100 km per hour. If they leave Town A at the same time to go to Town B 360km away, how far will Okello be from Town B when Isingoma arrives there?

Time taken by Isingoma $=\frac{\text { Distance }}{\text { speed }}=\frac{360}{120}=3$ hours
Distance moved by Okell in 3 hours $=$ speed x time

$$
\begin{aligned}
& =100 \times 3 \\
& =300 \mathrm{~km}
\end{aligned}
$$

Remaining distance to reach town $B=360-300=60 \mathrm{~km}$
8. A motorist drove from Town P to Town R via Q. study the graph below carefully and use it to answer the questions that EE follow:

a) How far is Town Q from P?

From the graph is 80 km
b) For how long did the motorist stay at Town Q?

He stayed 30 minutes
c) At what time did the motorist reach town R ?

He reached R at 12:00noon
d) What was the motorist's average speed on the whole journey?

$$
\begin{aligned}
& \text { Total time taken }=12: 00-7: 00=5 \text { hours } \\
& \text { Total distance }=160 \mathrm{~km} \\
& \text { Speed }=\frac{\text { distance }}{\text { time }}=\frac{160}{5}=28 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

9. The distance between Tororo and Mbale towns by road is 45 Km . On the map of Uganda the distance between the two towns is 5 cm . Find the scale of the map.

Scale on a map should in the same units
$1 \mathrm{~km}=100,000 \mathrm{~cm}$
$45 \mathrm{~km}=45 \times 100000=4,500,000 \mathrm{~cm}$
Scale:
5 cm represent 4,500,000
1 cm on map represent $\frac{4,500,000}{5}=90,000$
Scale 1: 90000
10. A bus broke down after covering $\frac{5}{7}$ of the journey. The remaining distance to complete the journey was 140km. How long was the whole journey?

Fraction for remaining journey $=1-\frac{5}{7}=\frac{2}{7}$
Let the journey be xkm
$\frac{2 x}{7}=140 \mathrm{~km}$
$x=\frac{140 \times 7}{2}=490 \mathrm{~km}$
11. A motor cyclist leaves his home at 9.00a.m. for Kisoro town which is 45 Km away, riding at 16 km per hour. At 9.15a.m he gets a puncture and delays for 15 minutes. At what speed must he cover the remaining journey in order to reach Kisoro town at 10.00a.m? (Give your answer in kilometers per hour.)

Time taken before the puncture $=9.15 \mathrm{am}-9.00 \mathrm{am}=15$ minutes $=\frac{15}{60}=\frac{1}{4}$ hours
Distance covered before the puncture $=$ speed \times time $=16 \times \frac{1}{4}=4 \mathrm{~km}$
Time wasted 15 minutes
Remaining distance $=45-4=41 \mathrm{~km}$
Remaining time $=10.00-(9.15+0.15)=30$ minutes or $\frac{1}{2}$ hours
Speed $=\frac{\text { distance }}{\text { time }}=\frac{41}{\frac{1}{2}}=82 \mathrm{~km} / \mathrm{hr}$
12. John Akii-Bua ran 100 metres in 10 seconds. Express his speed in kilometres per hour.

$$
\begin{aligned}
100 \mathrm{~m} & =\frac{100}{1000} \mathrm{~km} ; \quad 10 \text { seconds }=\frac{10}{3600} \mathrm{hrs} \\
\text { Speed } & =\text { distance } \div \text { time } \\
& =\frac{100}{1000} \mathrm{~km} \div \frac{10}{3600} \mathrm{hrs} \\
& =\frac{100}{1000} \times \frac{3600}{10}=36 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

13. A Gaso bus travelling from Kampala to Lyantonde at an average speed of 60 km per hour broke down after $21 / 2$ hours' drive. The repairs took 30 minutes. The bus continued with the journey at an average speed of 50 km per hour for an hour.
a) Find the distance covered by the bus.
```
Distance = speed x time = 2 1/2 x 60 + 50 < 1= 200km
```

b) Find the average speed of the bus over the whole journey.

$$
\begin{aligned}
& \text { Total time }=21 / 2+1 / 2+1=4 \text { hour } \\
& \text { Speed }=\frac{\text { distance }}{\text { time }}=\frac{200}{4}=50 \mathrm{~km} / \mathrm{hour}
\end{aligned}
$$

14. Matembe drove at 60 km per hour for $21 / 2 \mathrm{hrs}$ from A to B.
a) If Matembe left town A at 1:50 p.m at what time did he reach town B ?

Time of arrival	$=1: 50$
	$+2: 30$
	$+4: 20 \mathrm{pm}$

b) If the cost of petrol was Shs. 1190 per litre and Matembe's car used one litre to cover 10 kilometres, find the cost of petrol for the journey.

$$
\begin{aligned}
\text { Distance covered } & =\text { speed } \times \text { time } \\
& =60 \times 21 / 2=150 \mathrm{~km}
\end{aligned}
$$

But 10 km require 1 liter of petrol
150 km require $\frac{150}{10} \times 15$ liters
1 liter costs 1190
15liters cost $1190 \times 15=$ shs 177,850
15. Peter walked 0.15 km . What distance did he cover in metres?

```
1km = 1000m
0.15m=0.15 x 1000=150m
```

16. A driver covered a distance of 120 km in $1 / 2$ hours.
(a) What was his average speed?

$$
\begin{aligned}
\text { Speed } & =\text { distance } \div \text { time } \\
& =120 \div 11 / 2(\mathrm{~km} / \mathrm{hr}) \\
& =120 \div \frac{3}{2} \\
& =120 \times \frac{2}{3}=80 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

(b) What distance would he cover if he travelled for $23 / 4$ hours?

$$
\begin{aligned}
\text { Distance } & =\text { speed } \times \text { time } \\
& =80 \times 23 / 4 \\
& =80 \times \frac{11}{4}=220 \mathrm{~km}
\end{aligned}
$$

17. Okello had 30 km still to cover after travelling $\frac{3}{5}$ of the journey. How long was the journey? The fraction of uncovered journey $=1-\frac{3}{5}=\frac{2}{5}$

Let the journey be x
$\frac{2}{5}$ of $x=30$
$x=30 \times \frac{5}{2}=75$
18. The diameter of a wheel of a motorcycle is 35 cm . The motor-cycle covers 33 Km .
a) Find the number of revolutions the wheel makes to cover that journey.

Circumference of the wheel $=\pi d=\frac{22}{7} \times 35=110 \mathrm{~cm}$
Changing 33 km to cm

km	Hm	Dm	m	dm	cm	mm
1	0	0	0	0	0	

$$
\begin{aligned}
1 \mathrm{~km} & =100,000 \\
& \Rightarrow 33 \mathrm{~km}=33 \times 100,00=3300000 \mathrm{~cm}
\end{aligned}
$$

Numbers revolution $=\frac{\text { distance }}{\text { circumfrence }}=\frac{3300000}{110}=30000$ revolution
b) If the motor-cycle covers 110 meters per minute, how long will the journey of 33 Km take? (Give your answer in hours).

$$
\begin{aligned}
& 110 \mathrm{~m}=\frac{110}{1000}=0.11 \mathrm{~km} \\
& \text { 1minute }=\frac{1}{60} \text { hours }
\end{aligned}
$$

$\Rightarrow 0.11 \mathrm{~km}$ requires $\frac{1}{60}$ hours
$\therefore 33 \mathrm{~km}$ will require $\left(\frac{1}{60}\right.$ hours $\left.x 33\right) \div 0.11$

$$
\begin{aligned}
& =\frac{1}{60} \times 33 \div \frac{11}{100} \\
& =\frac{1}{60} \times 33 \times \frac{100}{11} \text { hours }
\end{aligned}
$$

$=5$ hours
19. A cyclist covers a distance of 21 km in 45 minutes. How long will it take him to cover 84 km ?

21 km require 45 minute
84 km will require $\frac{45 \times 84}{21}=180$ minute $=\frac{180}{60}=3$ hours
20. Kamoga Devis can run t metres in 45 seconds.
(a) Express his speed in kilometres per hour.
$\mathrm{t} \mathrm{m}=\frac{t}{1000} \mathrm{~km}$
45 seconds $=\frac{45}{3600}$ hour
Speed $=$ distance \div time
$=\frac{t}{1000} \div \frac{45}{3600}=\frac{t}{1000} \times \frac{3600}{45}=0.08 \mathrm{tkm} / \mathrm{h}$
21. Mbabazi walked $3,600 \mathrm{~m}$ in 36 minutes. Find his average speed in Km per hour.
$1000 \mathrm{~m}=1 \mathrm{~km}$
$3600 \mathrm{~m}=\frac{3600}{1000}=3.6 \mathrm{~km}$
60 minutes $=1$ hour
36 minutes $=\frac{36}{60}=\frac{3}{5}$ hour

$$
\begin{aligned}
\text { Speed } & =\text { distance } / \text { time } \\
& =3.6 \div \frac{3}{5} \\
& =3.6 \times \frac{5}{3} \\
& =6 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

22. A man left his home at 7.00a.m riding a bicycle and arrived at his place of work 25 Km away at 9.30 am
a) Find his average speed.

Time taken $=9.30 \mathrm{am}$

- 7.00 am
2.30 or $2 \frac{1}{2}$ hour

Speed $=\frac{\text { distance }}{\text { time }}=25 \div 2 \frac{1}{2}=25 \div \frac{5}{2}=25 x \frac{\text { System developed by }- \text { lulu e - }}{5}=10 \mathrm{~km} / \mathrm{hr}$
b) If he left his place of work for home at 5.00 pm . Riding at an average speed of 15 Km per hour, at what time did he get home?

$$
\begin{aligned}
& \text { Time taken }=\frac{\text { distance }}{\text { speed }}=\frac{25}{15}=\frac{5}{3}=1 \frac{2}{3} \text { hours }=1 \text { hour } 40 \text { minutes } \\
& \text { Time of arrival }=5: 00+1: 40=6: 40 \mathrm{pm}
\end{aligned}
$$

23. Kiyemba rode a bicycle from town A to town C through town B as follows:

He rode from A to B a distance of 30 km for 3 hours and then rested for $1 / 2$ an hour. From B, he rode to C a distance of 20 Km in $2^{1 / 2}$ hours.

On the graph given below, draw a line to show Kiyemba's movement. Also show towns B and C .

24. Mukasa's bicycle got spoilt after he had covered a distance of 20 km which was $\frac{1}{4}$ of his journey. How long was the journey?

Let the whole journey be x

$$
\begin{aligned}
& \frac{1}{4} x=20 \\
& x=20 \times 4=80
\end{aligned}
$$

25. John and Mary set out for a journey of 180 km . John's car consumes one litre of petrol every ten kilometres while Mary's consumes one litre every nine kilometres. If one litre of petrol costs sh 1,500 , how much more money did Mary spend?

Liters of petrol consumed by Mary
9 km require 1 litres
180 km require $\frac{1 \times 180}{9}=20 l$
Number of litres consumed by John's car
10km require 1 litre
180km require $(180 \times 1) / 10=18$ litres
Extra petrol consumed by Mary = 20-18

$$
=2 \text { litres }
$$

Extra money spent by Mary $=2 \times 1500$

$$
=3000
$$

26. a) Express $36 \mathrm{~km} / \mathrm{h}$ in metres per second.

$$
\text { Change } 36 \mathrm{~km} \text { to metres }=36 \times 1000=36000 \mathrm{~m}
$$

Change 1 hr to seconds $=1 \times 3600=3600 \mathrm{~s}$
$\therefore 36 \mathrm{~km} / \mathrm{hr}=36000 \mathrm{~m} / 3600 \mathrm{~s}=10 \mathrm{~m} / \mathrm{s}$
(b) A motorist covered 200km from 9.00am to 11.00am. Calculate his average speed.

Time taken $=11.00-9.00=2$ hours
Speed $=\frac{\text { distance }}{\text { time }}=\frac{200 \mathrm{~km}}{2 \text { hours }}=100 \mathrm{~km} / \mathrm{h}$
27. Joy drove from town A to town B a distance of 120 km in 2 hours. If it took her $1 \frac{1}{2}$ hours to drive from B to the next town C at the same speed, how far is town C from town A ?

$$
\begin{aligned}
& \text { Speed }=\frac{\text { distance }}{\text { time }}=\frac{120}{2}= \\
& \text { Distance between A and C }
\end{aligned}=\text { speed } \times \text { time } / \mathrm{hm} \text {. } \begin{aligned}
& \\
&=60 \times 31 / 2 \text { hours } \\
&=60 \times \frac{7}{2}=210 \mathrm{~km}
\end{aligned}
$$

28. Change 30 cm to metres

$$
100 \mathrm{~cm}=1 \mathrm{~m}
$$

$$
30 \mathrm{~m}=\frac{30 \times 1}{100}=0.3 \mathrm{~m}
$$

29. Bbosa left town P at 9.00am and drove at 55 km per hour for 2 hours to town Q he rested for half an hour at town Q he left town Q and drove for $1 \frac{1}{2}$ hours at 40 km per hour to town R; he rested for half an hour at town R. He then left town R and drove back to town $P 75 \mathrm{~km}$ per hour
(c) Draw Bbosa`s journey on the graph provided

(d) Find the average speed for the whole journey.

Total time $=6.7$ hours
Total distance $=170 \times 2=340 \mathrm{~km}$
Speed $=\frac{\text { distance }}{\text { time }}=\frac{340}{6.7}=51.5 \mathrm{kmhr}^{-1}$
30. The head teacher drove from the school to town P for 3 hours at a steady speed of 60 km per hour. He left town P at 11 am and drove back to the school on the same road at a steady speed of 90 km per town hour.
(a) At what time did the headmaster arrive at the school? (4 marks)

Distance between the school and the town $P=$ speed x time

$$
\begin{aligned}
& =60 \times 3 \\
& =180 \mathrm{~km}
\end{aligned}
$$

Time taken to go back $=\frac{\text { Distance }}{\text { speed }}=\frac{180}{90}=2$ hours

Time of arrival $=11.00 \mathrm{am}+2$ hours $=1.00 \mathrm{pm}$
(b) Work out the head teachers average speed for the whole journey. (1 marks)

Total distance $=180 \times 2=360 \mathrm{~km}$
Total time $=3+2=5$ hour
Speed $=\frac{\text { distance }}{\text { time }}=\frac{360}{5}=72 \mathrm{kmhr}^{-1}$
31. Change 12400 metres to kilometers
$1000 \mathrm{~m}=1 \mathrm{~km}$
$12400 \mathrm{~m}=\frac{12400 \times 1}{1000}=12.4 \mathrm{~km}$
32. Mutono left town X at 8.00 am and drove at 90 km per hour for one hour to town Y . He rested for half an hour at town Y. He left town Y and drove for one hour at 70 km per hour to town Z. He rested for half an hour at town Z. He then left town Z and drove to town X at a steady speed of 40 km per hour.
(a) draw Mutono`s journey on the graph provided on the next page. (b) Work out Mutono`s average speed for the whole journey (03 marks)

$$
\text { Speed }=\frac{\text { distance }}{\text { time }}=\frac{160 \times 2}{7}=45 \frac{5}{7} \mathrm{~km} / \mathrm{hr}
$$

33. Motor cyclist covered a distance of 42 km in $3 \frac{1}{2}$ hours. Calculate the average speed of the journey.

$$
\begin{aligned}
\text { Speed }=\frac{\text { distance }}{\text { time }} & =\frac{42}{3 \frac{1}{2}} \\
& =42 \div \frac{7}{2} \\
& =42 \times \frac{2}{7}=12 \mathrm{khr}^{-1}
\end{aligned}
$$

34. Use the graph to answer the question that follow.

a) At what time did Opio and Kato meet?

At 9:06am
b) What distance had Opio covered by 9:00am?

Vertical scale each small square represent $\frac{40 \mathrm{~km}}{10}=4 \mathrm{~km}$
Opio by 9.00am had covered $27 \times 4=108 \mathrm{~km}$
Alternatively opio by 9.00an had covered 200-92 = 108km
c) How far from town L was Opio at 10:00a.m?

By 10.00am Opio was $12 \times 4=48 \mathrm{~km}$ from L
d) Work out Kato's average speed for the journey he covered after resting.

Average speed $=\frac{\text { total distance }}{\text { total time taken }}$
Distance covered after resting $=200-60 \mathrm{~km}=140 \mathrm{~km}$
Time taken after resting $=11.00-8.30 \mathrm{am}=2$ hour 30 minutes $=21 / 2$ hours
\therefore Average speed $=\frac{140}{2 \frac{1}{2}}=56 \mathrm{kmhr}^{-1}$
e) Find Kato`s average speed for his whole journey.

$$
\text { Average speed }=\frac{\text { total distance }}{\text { total time taken }}=\frac{200}{(11.00 \mathrm{am}-7.00 \mathrm{am})}=\frac{200}{4}=50 \mathrm{kmhr}^{-1}
$$

35. Change 2.5 metres into centimeters.
$1 \mathrm{~m}=100 \mathrm{~cm}$
$2.5 \mathrm{~m}=2.5 \times 100 \mathrm{~cm}=250 \mathrm{~cm}$
36. A boy ran a distance of 6 km in 45 minutes. What was his speed in kilometers per hour?

Change 45 minutes to hours $=\frac{45}{60}=\frac{3}{4}$
Speed $=\frac{\text { distance }}{\text { time }}=6 \div \frac{3}{4}=6 \times \frac{4}{3}=8 \mathrm{kmhr}^{-1}$
37. Makeba's car uses 8litrer of petrol for every 50 km .
(a) how much petrol does he need for a journey of 325 km ?

50km take 8 liters
325 km take $\frac{8 \times 325}{50}=52$ litres

$\therefore 325 \mathrm{~km}$ require 52 litres

(b) If litre of petrol costs shs. 2,900, how much money will he spent on petrol needed to run the car for $1 \frac{1}{2}$ hour at a speed of 50 km per hour?

Distance $=$ speed \times time $=50 \times 11 / 2=75 \mathrm{~km}$
Total fuel required to run 75 km
50 km require 8 litres
75 km require $\frac{8 \times 75}{50}=12$ litres
Cost of 12 litres $=12 \times 2900=$ shs. 34800
38. Change 750 centimeters into metres

$$
\begin{aligned}
& 100 \mathrm{~cm}=1 \mathrm{~m} \\
& \therefore 750 \mathrm{~cm}=\frac{1 \times 750}{100}=7.5 \mathrm{~m}
\end{aligned}
$$

39. A bus covered a distance of 280 km in 3 hours and 30 minutes. What was its average speed?

$$
\begin{aligned}
\text { Speed } & =\frac{\text { distance }}{\text { time }}=\frac{280}{3 \frac{1}{2}} \\
& =280 \div \frac{7}{2}=280 \times \frac{2}{7}=80 \mathrm{kmhr}^{-1}
\end{aligned}
$$

40. Okidi left Kampala at 7.00a.m. driving a lorry at an average speed of $40 \mathrm{~km} / \mathrm{hr}$ for 2 hours to Jinja. He rested for one hour at Jinja, then continued to Tororo at an average speed of $50 \mathrm{~km} / \mathrm{hr}$ for another 2hours.
41.

(a) Use the above information to show Okidi's Journey on the graph below.

(b)Calculate Okidi's average speed for the whole journey.

Distance from Kampala - Jinja $=$ speed \times time $=40 \times 2=80 \mathrm{~km}$
Distance from Jinja to Tororo $=50 \times 2=100 \mathrm{~km}$
Total distance $=80+100 \mathrm{~km}=180 \mathrm{~km}$.
Total time = Time ending - starting time

$$
=12: 00=07: 00=5 \text { hours }
$$

Speed $=\frac{\text { Distance }}{\text { time }}=\frac{180}{5}=36 \mathrm{kmhr}^{-1}$
42. Opoka rides a distance of 2.97 km from his home to school on a bicycle. The wheel of the bicycle has a diameter of 63 cm .
(a) How many revolutions does the wheel make to cover the distance? (Take $\pi-22 / 7$)

Change 2.97 km to $\mathrm{cm}=2.97 \times 100000=297000 \mathrm{~cm}$
(03m arks)
Circumference of the wheel $=\pi d=\frac{22}{7} \times 63=198 \mathrm{~cm}$
Number of revolutions $=\frac{\text { distance }}{\text { circumfrnce }}=\frac{297000}{198}=1500$ revolution
(b) If Opaka makes 50 revolutions in one minute, how long does he take to reach the school?

50 revolution per minutes $=1$ minute
1500 revolutions take $\frac{1 \times 1500}{50}=30$ minutes
43. A cyclist covers 70 km in $2 \frac{1}{2}$ hours, how long will he take to cover 21 km at the same speed?

Method I

First determine the speed of a cyclist

$$
\text { speed }=\frac{\text { distance }}{\text { time }}=\frac{70}{21 / 2}=\frac{70}{\frac{5}{2}}=70 \times \frac{2}{5}=28 \mathrm{kmhr}^{-1}
$$

Then, find the time; Time $=\frac{\text { distance }}{\text { spedd }}=\frac{21}{28}=\frac{3}{4} h r s$

Method II (by proportions)

70 km are covered in $2 \frac{1}{2}$ hours
1 km is covered in $21 / 2 \div 70$
21 km is covered in $(21 / 2 \div 70) \times 21=\frac{3}{4} h r s$
44. The table below shows how a motor cyclist travelled from town R through towns Q and S to town P .

Study and use it to answer the question that below

Town	arrival	departure
R		$9: 00 \mathrm{a} . \mathrm{m}$
Q	$9: 30 \mathrm{a} . \mathrm{m}$	$9: 42 \mathrm{a} . \mathrm{m}$
S	$10: 35 \mathrm{a} . \mathrm{m}$.	$11: 10 \mathrm{a} . \mathrm{m}$
P	$1: 30 \mathrm{p} . \mathrm{m}$	

a. How long motor cyclist stay at town S

11: 10

- 10:35 35 minutes

35
b. Find time the motor cyclist took to travel from town R to town P (02mark)

$$
\text { Time taken }=12.00-9.00+1.30=4 \text { hrs } 30 \text { minutes }
$$

c. If the distance from town R to town P is 180 km , calculate the average speed of the motor cyclist for the whole journey.

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { time }} \\
& =\frac{180}{\frac{9}{4}}=\frac{180 \times 4}{9}=80 \mathrm{kmhr}^{-1}
\end{aligned}
$$

45. Change 10 square meters into square centimeters.

$$
\begin{aligned}
1 \mathrm{~m}^{2} \quad & =1 \mathrm{~m} \times 1 \mathrm{~m} \\
& =100 \mathrm{~cm} \times 100 \mathrm{~cm} \\
& 10000 \mathrm{~cm}^{2} \\
\therefore 10 \mathrm{~m}^{2} & =10 \times 10000 \mathrm{~cm}^{2} \\
= & 1000000 \mathrm{~cm}^{2}
\end{aligned}
$$

46. A school bus taking pupils to a Game park covered 75% of its journey in $1 \frac{1}{2}$ hours. The bus travelled at a steady speed of 80 km per hour. Find how the school is from the game Park.
(04marks).
Distance covered in $1 \frac{1}{2}$ hour $=$ speed x time

$$
=80 \times 1 \text { 1⁄2 }
$$

= 120km

Let the total distance be X
47. A motorist travels 64 km in 40 minutes. Find the speed of the motorist in kilometres per hour. Change 40 minutes to hours $=\frac{40}{60}=\frac{2}{3}$

Speed $=$ Distance/ time

$$
=64 \div \frac{2}{3}=64 \times \frac{3}{2}=96 \mathrm{~km} / \mathrm{hr}
$$

48. A taxi driver left town A for town B at 10:30am driving at a speed of 80 kilometres per hour. The driver reached town B at 2:00 pm.
(a) Calculate the time taken by the driver to reach town B. (03 marks)

Change the time into 24 -hour clock and subtract $=1400$
\qquad
$=330=31 / 2$ hours
(b) Find the distance between town A and townB

$$
\begin{aligned}
\text { Distance } & =\text { speed } \times \text { time } \\
& =80 \times 31 / 2=80 \times \frac{7}{2}=280 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \quad \frac{75 X}{100}=120 \\
& X=160
\end{aligned}
$$

49. A car uses 7 litres of petrol to cover 28 kilometres. How many litres of petrol can it use to cover 64kilometers?

28km require 7L
64 km require $=\frac{64 \times 7}{28}=16$ litres
50. Martha drove from town A to town B at a speed of 72 km per hour, town A is 90 km from town B. calculate the time she took to reach town B.

$$
\text { Time }=\frac{\text { distance }}{\text { speed }}=\frac{90}{72}=\frac{15}{12}=\frac{5}{4}=1 \frac{1}{4} \text { hours }
$$

