

This document is sponsored by

Volume

This is the amount of space taken up by an object, while capacity is the measure of an object's ability to hold a substance, like a solid, a liquid or a gas.
Volume of simple structures

Example

The diagram below is of a piece of thick metallic pipe 10 cm long. The diameter of the pipe is 4.2 cm and the diameter of the bore (hole) is 2.8 cm . Find the volume of the metal which makes up the pipe. (Take $\pi=22 / 7$)

Volume of the metal $=\pi h\left(R^{2}-r^{2}\right)$

$$
\begin{aligned}
& =\frac{22}{7} \times 10 \times\left(\left(\frac{4.2}{2}\right)^{2}-\left(\frac{2.8}{2}\right)^{2}\right) \\
& =\frac{22}{7} \times 10 \times\left(2.1^{2}-1.4^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{22}{7} \times 10 \times(2.1+1.4)(2.1-1.4) \\
& =\frac{22}{7} \times 10 \times 3.5 \times 0.7 \\
& =77 \mathrm{~cm}^{3}
\end{aligned}
$$

Revision Questions

1. A welder was given a metal sheet with measurements as shown in the diagram below. He welded it into a hollow cylinder, making the height 100 cm . (Take $\pi=\frac{22}{7}$)

(a) What is the surface area of the sheet of metal needed to cover the bottom of the cylinder?
(b) What maximum volume of water will the cylinder hold?
2. Below is a cube (C) and a box (B). Waiswa packs curry powder in cubes and packs the cubes in a box for export to Kigali.

Calculate space left empty after filling the box with cubes of curry powder.
3. The volume of the box below is $480 \mathrm{~cm}^{3}$

(a) Find the value of r
(b) Calculate its surface area
4. Pieces of soap each measuring 3 cm by 3 cm by 3 cm are to be packed into a box measuring 30 cm by 25 cm by 20 cm . (See the diagram below.)

a) How many pieces of soap can be packed into the box?
b) Calculate the space left empty after pieces of soap have been packed into the box.
5. (a) Kamya packs cylindrical beef tins whose height is 10 cm and diameter 5 cm in a rectangular carton measuring 60 cm long 10 cm wide, 30 cm high, How many tins will be packed in the carton?
(b) Find the space (in cm^{3}) that will remain after the tins have been packed in the carton. (Take $\pi=3.14)$
6. A cuboidal water tank (A), which is 70 cm long by 35 cm wide by 110 cm , was filled with water. The water from $\operatorname{tank}(A)$ was all poured into the cylindrical $\operatorname{tank}(B)$ of diameter 70 cm .

a) Find the volume of water in tank A when it is full
b) Find the new height of water after it has been poured into tank B
7. How many cubes of $1 / 2 \mathrm{~cm}^{3}$ volumes are contained in a cube of $2 \mathrm{~cm}^{3}$ volume?
8. A milk seller has 36 litres of milk. He sells milks using a container measuring 6 cm by 10 cm by 6 cm at shs. 150 per full container. How much money does he get selling all the milks?
9. The figure below is a cylindrical tank containing 1540 litres of water

(a). Find the radius of tank. (use $\pi=\frac{22}{7}$)
(b) If the tank is $\frac{4}{5}$ full, find its capacity
10. The diagram below shows a big box 60 cm long, 50 cm wide, 40 cm high and a small box 9 cm long, 9 cm wide, and 9 cm high.

Study it carefully and answer the questions that follow.

If such small boxes are to be packed into the big box.
(a) Find the number of small boxes that will be packed in the first layer of the big box.
(b) How many layers will fill the big box?
(c) How many small boxes will fill the big box?
(2 marks)
11. A cylindrical tin of radius 7 cm contains $3080 \mathrm{~cm}^{3}$ of cooking oil.
(a) Joan used $2156 \mathrm{~cm}^{3}$ of the cooking oil. What is the height of the cooking oil remaining in the tin? (Take $\pi=\frac{22}{7}$)
(03marks)
(b). Joan poured the remaining cooking oil into a rectangular tin with base area $77 \mathrm{~cm}^{2}$. What was the height of the oil in the tin?
12. A tank was $\frac{2}{3}$ full of water. When $1 / 4$ of the water in the tank was drawn, 2,500 litres remained. Find the capacity of the tank when full.
(04 marks)

Let the volume the total volume be V
13. The figure below is a cuboid. Study and use it to answer the questions that follow.

(a) Find the value of y
(02 marks)
(b) Find the volume of the cuboid
14. A bucket was $\frac{3}{4}$ full of water. When 4 liters were removed, it become $\frac{1}{2}$. What is the capacity of the bucket?
15. Bbosa filled container A below with drinking water, she served visitor with the water using cups of size B shown in the diagram

Find the total number of full cups of water she served the visit
(Use $\pi \frac{22}{7}$)
(06marks)
16. The area of the shaded part of the cuboid below is $12 \mathrm{~cm}^{2}$. Calculate the volume of the cuboid.

17. A cylindrical tank of diameter 70 cm contains water to a height of 100 cm . Find in litres the amount of water the tank contains (Use $\pi=\frac{22}{7}$) (04 marks)
18. Bottles of 300 millilitres (ml) were used to fill a nine litre bucket with water. Find the number of full 300 ml bottles that were used.
19. The sum of the lengths of the edges of the prism below is 92 cm

(i) Find the length $1 .(03 \mathrm{~cm})$
(ii) Find the volume of the prism.(02marks)
20. The figure below shows a rectangular sheet of metal. The sheet is curved to form the wall of cylindrical tank whose height is 100 cm .

(a) Find the diameter of the tank formed. (use $\left.\pi=\frac{22}{7}\right)(02$ marks)
(b) Calculate
(i) the area of the sheet required to cover the base of the tank. (02marks)
(ii) Capacity of the tank (01mark)
21. A Cylinder with radius 7 cm contains $2,926 \mathrm{~cm}^{3}$ of liquid soap (Take $\pi=22 / 7$)
(i) If $616 \mathrm{~cm}^{3}$ of the liquid soap is used, what is the height of the liquid soap remaining?
(ii) If the $616 \mathrm{~cm}^{3}$ was allowed to pour into a rectangular tin with a base area of $88 \mathrm{~cm}^{2}$, to what height will the liquid soap rise?

Suggested answers

1. A welder was given a metal sheet with measurements as shown in the diagram below. He welded it into a hollow cylinder, making the height 100 cm . (Take $\pi=\frac{22}{7}$)

440 cm

(a) What is the surface area of the sheet of metal needed to cover the bottom of the cylinder?

$$
\begin{aligned}
& \text { Radius of the bottom }=2 \pi r=440 \\
& \qquad \begin{aligned}
&=2 \times \frac{22}{7} \times r=440 \\
& r=70
\end{aligned}
\end{aligned}
$$

$$
\text { Area }=2 \pi r^{2}=2 \times \frac{22}{7} \times 70 \times 70=30,800
$$

(b) What maximum volume of water will the cylinder hold?

Volume $=$ Area $\times \mathrm{h}=30800 \times 100=3080000 \mathrm{~cm}^{3}$
2. Below is a cube (C) and a box (B). Waiswa packs curry powder in cubes and packs the cubes in a box for export to Kigali.

Calculate space left empty after filling the box with cubes of curry powder.

> Number of boxes along the length $=\frac{32}{3}=10 \frac{2}{3}$ Number of boxes along the width $=\frac{25}{3}=8 \frac{1}{3}$ $$
=\frac{18}{3}=6
$$ Number of layer Number of cubes that are packed in the box $=10 \times 8 \times 6=480$ cubes Volume occupied by the cube $=480 \times 3 \times 3 \times 3=12960 \mathrm{~cm}^{3}$ Volume of the box $=32 \times 25 \times 18=14400 \mathrm{~cm}^{3}$ Unoccupied space $=14400-12960=1440 \mathrm{~cm}^{3}$

3. The volume of the box below is $480 \mathrm{~cm}^{3}$

(a) Find the value of r

$$
\begin{aligned}
\text { Volume } & =1 \times \mathrm{w} \times \mathrm{h} \\
480 & =12 \times r \times 8 \\
480 & =96 \mathrm{r} \\
r & =5 \mathrm{~cm}
\end{aligned}
$$

(b) Calculate its surface area

$$
\begin{aligned}
\text { Surface area } & =2(12 \times 5)+2(12 \times 8)+2(5 \times 8) \\
& =2(60+96+40) \\
& =2 \times 196 \\
& =392
\end{aligned}
$$

4. Pieces of soap each measuring 3 cm by 3 cm by 3 cm are to be packed into a box measuring 30 cm by 25 cm by 20 cm . (See the diagram below.)

a) How many pieces of soap can be packed into the box?

$$
\text { Bar } \quad \begin{aligned}
& \text { Bar long the length }=30 / 3=10 \\
& \text { Bars across }=25 / 3=8 \\
& \text { Bars along the height }=20 / 3=6 \\
& \text { Total bars }=10 \times 8 \times 6=480
\end{aligned}
$$

b) Calculate the space left empty after pieces of soap have been packed into the box.

Volume of the box $=30 \times 20 \times 25=15000 \mathrm{~cm}^{3}$
Volume of soap $=480 \times(3 \times 3 \times 3)=12960 \mathrm{~cm}^{3}$
Empty space $=15000-12960=2040 \mathrm{~cm}^{3}$
5. (a) Kamya packs cylindrical beef tins whose height is 10 cm and diameter 5 cm in a rectangular carton measuring 60 cm long 10cm wide, 30 cm high, How many tins will be packed in the carton?

$$
\begin{aligned}
\text { Number of tins } & =\frac{60}{5} \times \frac{10}{5} \times \frac{30}{10} \\
& =12 \times 2 \times 3=72 \text { tins }
\end{aligned}
$$

(a) Find the space (in cm^{3}) that will remain after the tins have been packed in the carton.
$($ Take $\pi=3.14)$

Volume of 1 tin $=\pi r^{2} h$

$$
=\frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times 10=14140.8 \mathrm{~cm}^{3}
$$

Volume of 48 tins $=196.4 \times 72=9427.2 \mathrm{~cm}^{3}$
Volume of the box $=60 \times 10 \times 30=18000$
Unoccupied volume $=18000-14140.8=3859.2 \mathrm{~cm}^{3}$
6. A cuboidal water tank (A), which is 70 cm long by 35 cm wide by 110 cm , was filled with water. The water from $\operatorname{tank}(A)$ was all poured into the cylindrical $\operatorname{tank}(B)$ of diameter 70 cm .

a) Find the volume of water in tank A when it is full

$$
\begin{aligned}
\text { Volume } & =\mathrm{L} \times \mathrm{W} \times \mathrm{H} \\
& =70 \times 35 \times 110 \\
& =269500 \mathrm{~cm}^{2}
\end{aligned}
$$

b) Find the new height of water after it has been poured into tank B

$$
\begin{aligned}
& \text { Volume of cylinder }=\pi r^{2} \mathrm{~h} \\
& \text { Radius } \mathrm{r}=\frac{\text { diameter }}{2}=\frac{70}{2}=35 \mathrm{~cm} \\
& \qquad 269500=\frac{22}{7} \times 35 \times 35 \times \mathrm{h} \\
& \Rightarrow \quad \mathrm{~h}=70 \mathrm{~cm}
\end{aligned}
$$

7. How many cubes of $1 / 2 \mathrm{~cm}^{3}$ volumes are contained in a cube of $2 \mathrm{~cm}^{3}$ volume?

Number or cube $2 \div \frac{1}{2}=2 \times \frac{2}{1}=4$ cubes
8. A milk seller has 36 litres of milk. He sells milks using a container measuring 6 cm by 10 cm by 6 cm at shs. 150 per full container. How much money does he get selling all the milks?

Volume of milk in $\mathrm{cm}^{3}=36 \times 1000 \mathrm{~cm}^{3}$

$$
=36000 \mathrm{~cm}^{3}
$$

Volume of the unit $=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

$$
\begin{aligned}
& =10 \times 6 \times 6 \\
& =360 \mathrm{~cm}^{3}
\end{aligned}
$$

Number of units $=\frac{36000}{360}=100$ units
But 1 unit costs $=150 /=$
\therefore he would earn $100 \times 150=15,000 /=$
9. The figure below is a cylindrical tank containing 1540 litres of water

(a) Find the radius of tank. (use $\pi=\frac{22}{7}$)

Volume of a cylinder $=\pi r^{2} h$
$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
$1540 \mathrm{l}=1540 \times 1000=1540000 \mathrm{~cm}^{3}$
$\therefore 1540000=\pi r^{2} \times 100$
$r^{2}=\frac{1540000}{(\pi \times 100)}$
$\mathrm{r}=\sqrt{\left(\frac{1540000}{(\pi \times 100)}\right)}=70 \mathrm{~cm}$
(b) If the tank is $\frac{4}{5}$ full, find its capacity

Let the total volume be V
$\frac{4}{5} V=1540$
$4 V=1540 \times 5$
$\mathrm{V}=1925$ litres
10. The diagram below shows a big box 60 cm long, 50 cm wide, 40 cm high and a small box 9 cm long, 9 cm wide, and 9 cm high.

Study it carefully and answer the questions that follow.

If such small boxes are to be packed into the big box.
(a) Find the number of small boxes that will be packed in the first layer of the big box.

Number of small boxes $=\frac{L}{l} \times \frac{W}{w}=\frac{60}{9} \times \frac{50}{9}=30$ small boxes
(b) How many layers will fill the big box?
(2 marks)
Number of layers $=\frac{H}{h}=\frac{40}{9}=4$
(c) How many small boxes will fill the big box?
(2 marks)
Number of small boxes $=30 \times 4=120$ small boxes
11. A cylindrical tin of radius 7 cm contains $3080 \mathrm{~cm}^{3}$ of cooking oil.
(a) Joan used $2156 \mathrm{~cm}^{3}$ of the cooking oil. What is the height of the cooking oil remaining in the tin? (Take $\pi=\frac{22}{7}$)

$$
\begin{aligned}
\text { Volume of remaining oil } & =3080 \mathrm{~cm}^{3} \\
& =\frac{-2156 \mathrm{~cm}^{3}}{924 \mathrm{~cm}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume } & =\text { base area } \mathrm{x} \text { height }(\mathrm{h}) \\
& =\left(\pi \mathrm{r}^{2}\right) \mathrm{h} \\
924 & =\left(\frac{22}{7} \times 7 \times 7\right) \times \mathrm{h} \\
\mathrm{~h} & =6 \mathrm{~cm}^{3}
\end{aligned}
$$

(b) Joan poured the remaining cooking oil into a rectangular tin with base area $77 \mathrm{~cm}^{2}$. What was the height of the oil in the tin?

$$
\begin{aligned}
& \text { Volume }=\text { base area } \times \text { height }(\mathrm{h}) \\
& \begin{aligned}
924 & =77 \mathrm{~h} \\
\mathrm{~h} & =12 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

12. A tank was $\frac{2}{3}$ full of water. When $1 / 4$ of the water in the tank was drawn, 2,500 litres remained. Find the capacity of the tank when full.

Let the volume the total volume be V
$\left(\frac{2}{3}\left(1-\frac{1}{4}\right) \times V=2,500\right.$ litres
$\mathrm{V}=5000 \mathrm{litres}$
13. The figure below is a cuboid. Study and use it to answer the questions that follow.

(a) Find the value of y

$$
\begin{aligned}
2 y-3 & =y+2 \\
y & =3
\end{aligned}
$$

(b) Find the volume of the cuboid

$$
\begin{aligned}
& \text { Length }=y+2=5+2=7 \\
& \text { Width }=y-2=3 \\
& \text { Height }=y=5 \\
& \text { Volume }=\text { length } \times \text { width } \times \text { height }=7 \times 3 \times 5=105 \mathrm{~cm}^{3} .
\end{aligned}
$$

14. A bucket was $\frac{3}{4}$ full of water. When 4 liters were removed, it become $\frac{1}{2}$. What is the capacity of the bucket?

Let the capacity of bucket be X
$\frac{3}{4} X-4=\frac{1}{2} X$
Multiply be 4 throughout
$3 X-16=2 X$
Collect like terms
$X=16$
15. Bbosa filled container A below with drinking water, she served visitor with the water using cups of size B shown in the diagram

Find the total number of full cups of water she served the visit
(Use $\pi \frac{22}{7}$)
(06marks)
Volume of a cylinder $=\pi r^{2} h$
Volume of container $\mathrm{A}=\frac{22 \times 14^{2} \times 50}{7}=30800 \mathrm{~cm}^{3}$
Volume of each cup $=\frac{22 \times 3.5 \times 3.5 \times 10}{7}=385 \mathrm{~cm}^{3}$
Number of filled cups $=\frac{\text { volume of } A}{\text { volume of the cup }}=\frac{30800}{385}=80 \mathrm{cups}$
16. The area of the shaded part of the cuboid below is $12 \mathrm{~cm}^{2}$. Calculate the volume of the cuboid.

$$
\begin{aligned}
\text { Volume } & =\text { Area } \times \text { height } \\
& =12 \times 7=84 \mathrm{~cm}^{3}
\end{aligned}
$$

17. A cylindrical tank of diameter 70 cm contains water to a height of 100 cm .

Find in litres the amount of water the tank contains (Use $\pi=\frac{22}{7}$) (04 marks)
Volume $=\pi \mathrm{r}^{2} \mathrm{~h}=\frac{22}{7} \times\left(\frac{70}{2}\right)^{2} \times 100=385000 \mathrm{~cm}^{3}=\frac{385000}{1000}=385 \mathrm{~L}$
18. Bottles of 300 millilitres (ml) were used to fill a nine litre bucket with water. Find the number of full 300 ml bottles that were used.
$91=9 \times 1000=9000 \mathrm{ml}$
Number of bottles $=\frac{9000}{300}=30$ bottles
19. The sum of the lengths of the edges of the prism below is 92 cm

(i) Find the length $1 .(03 \mathrm{~cm})$

The sum of the length of edges of prism $=4(1+W+h)$

$$
\begin{aligned}
92 & =4(10+8+1) \\
\frac{92}{4} & =18+1 \\
23 & =18+1 \\
1 & =5
\end{aligned}
$$

(ii) Find the volume of the prism.(02marks)

$$
\begin{aligned}
\text { Volume } & =1 \times \mathrm{w} \times \mathrm{h} \\
& =10 \times 8 \times 5 \\
& =400 \mathrm{~cm}^{3}
\end{aligned}
$$

20. The figure below shows a rectangular sheet of metal. The sheet is curved to form the wall of cylindrical tank whose height is 100 cm .

(a) Find the diameter of the tank formed. (use $\pi=\frac{22}{7}$) (02 marks)

Circumference $=\pi \mathrm{d}$

$$
\begin{aligned}
\frac{22}{7} \times d & =220 \\
\mathrm{~d} & =\frac{220 \times 7}{22}=70 \mathrm{~cm}
\end{aligned}
$$

(b) Calculate
(iii) the area of the sheet required to cover the base of the tank. (02marks)
radius $=\frac{d}{2}=\frac{70}{2}=35 \mathrm{~cm}$
area $=\pi \mathrm{r}^{2}=\frac{22}{7} \times 35 \times 35=3850 \mathrm{~cm}^{2}$
(iv) Capacity of the tank (01mark)

Volume $=$ area \times height $=3850 \times 100=385000 \mathrm{~cm}^{3}$
21. A Cylinder with radius 7 cm contains $2,926 \mathrm{~cm}^{3}$ of liquid soap (Take $\pi=22 / 7$)
(i) If $616 \mathrm{~cm}^{3}$ of the liquid soap is used, what is the height of the liquid soap remaining?

Volume of liquid soap remaining $=2926-616=2310 \mathrm{~cm}^{3}$
Let the height of remaining liquid soap be h
Volume $=\pi r^{2} h=2310$

$$
\begin{aligned}
\frac{22}{7} \times 7 \times 7 \times h & =2310 \\
h & =15 \mathrm{~cm}
\end{aligned}
$$

(i) If the $616 \mathrm{~cm}^{3}$ was allowed to pour into a rectangular tin with a base area of $88 \mathrm{~cm}^{2}$, to what height will the liquid soap rise?

Volume	$=$ area of the base \times height
$616 \mathrm{~cm}^{3}$	$=88 \times \mathrm{h}$
h	$=7 \mathrm{~cm}$

the height of the liquid will rise to 7 cm

