

This document is sponsored by
shaty The Science Foundation College Kiwanga- Namanve Uganda East Africa
Senior one to senior six
+256778633682, 753802709
Based on, best for sciences

We are accustomed to writing numbers in base ten, using the symbols for $0,1,2,3,4,5,6,7,8$, and 9 probably because we have 10 fingers. For example, 75 means 7 tens and five units. However numbers can be written in any number base.

Example 1

Change 75 base ten to base eight
$75_{\text {ten }}=113_{\text {eight }}$

8	75	R
8	9	3
	1	1

Example 2

Change 113eight to base 10

$$
\begin{aligned}
113_{\text {eight }} & =\left[\left(1 \times 8^{2}\right)+\left(1 \times 8^{1}\right)+\left(3 \times 8^{0}\right)\right] \text { ten } \\
& =(1 \times 64)+(1 \times 8)+(3 \times 1) \\
& =64+8+3 \\
& =75
\end{aligned}
$$

Therefore, if we use base 8 instead of base ten, then 75 is written as 113 which denotes one sixty-four (8^{2}), one eight (8^{1}) and 3 units (instead of hundreds, tens and units).

Base 2 is particularly useful as it only requires two symbols, for zero and one, and it is the way numbers are represented in computers.

Example 3

Change 75 ten to base 2

2	75	R
2	37	1
2	18	1
2	9	0
2	4	1
2	2	0
	1	0

Thus, $75_{\text {ten }}=1001011_{\text {two }}$
Just as, in base ten, the columns represent powers of 10 and have 'place value' $1,10,10^{2}, 10^{3}$ etc. (reading from right to left), so in base 2 , the columns represent powers of 2 . Hence the number 1001011 denotes (reading from right to left):

1 unit $\left(2^{0}\right), 1$ two $\left(2^{1}\right)$, no fours $\left(2^{2}\right), 1$ eight $\left(2^{3}\right)$, no sixteens $\left(2^{4}\right)$, no thirty-twos $\left(2^{5}\right), 1$ sixtyfour $\left(2^{6}\right)$.

The number 1001011 in base 2 is the same as the number 75 in base ten.

Example 4

Change 75ten to base five

5	75	R
5	15	0
	3	0

Thus, $75_{\text {ten }}=300_{\text {five }}$
We use the symbols $0,1,2,3$ and 4 to represent numbers in base 5 . The columns in base 5 have 'place value' $1,5,25,125,625$ etc. reading from right to left. The number 75 in base ten is the same as the number 300 in base five, that is 3 twenty-fives, no fives and no units.

Example 5

Change 203six to base ten

$$
\begin{aligned}
203 \text { six } & =\left[\left(2 \times 6^{2}\right)+\left(0 \times 6^{1}\right)+\left(3 \times 6^{0}\right)\right]_{\mathrm{ten}} \\
& =[2 \times 36+0+3 \times 1]_{\mathrm{ten}} \\
& =72+3=75_{\mathrm{ten}}
\end{aligned}
$$

Writing the number 75 in base six we get 203, which represents 2 thirty-sixes, no sixes and 3 units.

We have seen that 75 (base10), 1001011 (base 2), 300 (base 5), 113 (base 8), and 203 (base 6) all represent the same number.

Similarly, we can write 75 in any base we choose and we can write all numbers in any base.

Revision questions

1. Subtract 1101 two $-110_{\text {two }}$.
2. Change 72 ten to binary
3. Express $45_{\text {ten }}$ to binary
4. Write: $21_{\text {ten }}$ in base two
5. Change $1010_{\text {two }}$ to base ten
6. Add: $101_{\mathrm{two}}+11_{\mathrm{two}}$
7. Change $110_{\text {two }}$ to base ten.
8. Change 3 to binary system.
9. Work out:
10. Work out: $110_{\text {two }} \times 11_{\text {two }}$
11. Change 11010 two to base ten.
12. Change 1011_{two} to base ten
(2marks)
13. Change $11011_{\text {two }}$ to base ten.
14. Work out: $110_{\text {two }} \times 11_{\text {two }}$
15. (a) Write the place value of 2 and 1 in 201three (02 mark)
(b) Work out: 42five x 21 five
(b) Given that $34_{\mathrm{t}}=112_{\text {four, }}$ find the value of t

Suggested answers

1. Subtract 1101 two $-110_{\text {two }}$.

1101 two
-llotwo
$\underline{\underline{111 t w o}}$

Or
First change the numbers to base ten, subtract the numbers and then change the answer to base two.

$$
\begin{aligned}
1101 \text { two }=\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right) & =13 \\
-110 \text { two }=\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right) & =-06 \\
& =7 \text { ten }
\end{aligned}
$$

Converting 7to base two

2	7	R
2	3	1
2	1	1
	0	1

Hence, 1101two-110two=111two
2. Change 72 ten to binary

2	72	r
2	36	0
2	18	0
2	9	1
2	4	0
2	2	0
2	1	

3. Express $45_{\text {ten }}$ to binary

2	45	R
2	22	1
2	11	0
2	5	1
2	2	1
2	1	0

$45_{\text {ten }}=101101_{\text {two }}$
4. Write: $21_{\text {ten }}$ in base two

2	21	R
2	10	1
2	5	0
2	2	1
	1	0

21ten $=10101$ two
5. Change 1010 two to base ten

$$
\begin{aligned}
1010_{\mathrm{two}} & =\left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right) \\
& =8+0+2+0 \\
& =10
\end{aligned}
$$

6. Add: $101_{\mathrm{two}}+11_{\mathrm{two}}$
$101_{\text {two }}$
$+11_{\text {two }}$
$1000_{\text {two }}$
\qquad
7. Change $110_{\text {two }}$ to base ten.

$$
\begin{aligned}
110_{\mathrm{two}} & =\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right) \\
& =4+2+0 \\
& =6
\end{aligned}
$$

8. Change 3 to binary system.

2	3	r
	1	1

$$
\therefore \quad 3_{\mathrm{ten}}=11_{\mathrm{two}}
$$

9. Work out:

1010two

+ 111two
11two

10. Work out: $110_{\text {two }} \times 11_{\text {two }}$

110
x 11
110
110
10010
11. Change 11010 two to base ten.

$$
\begin{aligned}
1^{4} 1^{3} 0^{2} 1^{1} 0^{0}{ }_{\text {two }} & =1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& =16+8+0+2+0 \\
& =26_{\mathrm{ten}}
\end{aligned}
$$

12. Change $1011_{\text {two }}$ to base ten (2marks)

$$
\left(1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}\right)=(8+0+2+1)=11
$$

13. Change $11011_{\text {two }}$ to base ten.

$$
\begin{aligned}
1^{4} 1^{3} 0^{2} 1^{1} 1^{0}{ }^{0} \text { two } & =1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =16+8+0+2+1 \\
& =27
\end{aligned}
$$

14 . Work out: $\perp 1 \mathcal{I}_{\text {two }}+\perp \perp \perp_{\text {two }}$

$$
\begin{array}{r}
1101_{\mathrm{two}} \\
+111_{\mathrm{two}} \\
\hline 10100
\end{array}
$$

15 . Work out: $110_{\text {two }} \times 11_{\text {two }}$
110
x 11
110
110

10010

16. (a) Write the place value of 2 and 1 in 201three

Place value of $2=2 \times 3^{2}=$ or 2 nines
Place value of $1=1 \times 3^{0}$ or 1 unit
(b) Work out: 42five x 21 five

42
$\times 21$
42
134
$1432_{\text {five }}$

17. (a) work out

$$
\begin{array}{r}
333_{\text {five }} \\
+123_{\text {five }} \\
\hline 1011_{\text {five }}
\end{array}
$$

(b) Given that $34_{\mathrm{t}}=112_{\text {four, }}$ find the value of t
$34 \mathrm{tm}=112$ four
8. It implies that $3 \mathrm{t}^{1}+4 \mathrm{t}^{0}=1 \times 4^{2}+1 \times 4^{1}+2 \times 4^{0}$

$$
\begin{aligned}
3 t+4 & =16+4+2 \\
3 t & =18 \\
t & =6
\end{aligned}
$$

