Have solutions for this test in your revision book

1. The forces $\binom{3}{-4},\binom{5}{12}$ and $\binom{7}{24} N$, act on a particle of mass 3.5 kg . Calculate the ;
(a) Resultant force on the particle.
(b) Magnitude of the acceleration of the particle.
2. Locate each of the three roots of the equation $x^{4}=4+4 x$ in the interval $-2 \leq x \leq 3$.
3. A particle is projected from the origin and has an initial velocity of $(7 i+5 j) m s^{-1}$. Given that the particle passes through the point P , position vector $(x i-30 j) \mathrm{m}$, find the time taken for this to occur and the value of x. (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
4. The table below shows the order in which ten candidates were ranked in two tests

Test 1	A	F	D	C	H	J	K	B	E	L
Test 2	D	F	C	A	J	K	H	B	L	E

Calculate the rank correlation coefficient between tests 1 and 2. Hence comment on your result at a 5% level.
5. The probabilities that a man and his wife come back home early are $\frac{2}{3}$ and $\frac{3}{4}$ respectively , and the probability that the wife is back early if the man is early is $\frac{7}{8}$, find the probability that they are both ;
(a) Early
(b) Late.
6. A uniform rod $A B$ of mass m hangs vertically with end A freely hinged to a fixed point . The rod is pulled a side by a horizontal force F, applied at B, until it makes an angle of 30° with the downward vertical, show that $F=\frac{m g}{2 \sqrt{3}}$.
7. Study the table below ;

x	k	2 k	3 k
$\mathrm{g}(x)$	0.16	0.48	0.64

Using linear extrapolation/interpolation find
(i) $\quad f(1.5 k)$
(ii) The value of a such that $f(a k)=0.5$.
8. A fruit machine consists of 3 windows, each of which shows pictures of fruits; lemons or oranges or mangoes or apples. The probability that a window shows a particular fruit is as follows; P (lemons) $=0.4, \mathrm{P}$ (oranges) $=0.1, \mathrm{P}$ (mangoes) $=0.2, \mathrm{P}$ (apples) $=0.3$. The windows operate independently.Anyone wanting to play the fruit machine pays $s h s .10000$. The winning combination and amount are as follows;
Orange in 3 windows shs. 10000
Orange in 2 windows and mangoes in 1 window shs. 80000.
Mangoes in 3 windows shs. 50000.
Lemons in 3 windows shs. 40000 .

Find the expected gain/loss per turn.
9. (a) If two events A and B are independent and $3 P(A U B)=5 P(B)=4 P(A)$. Find
(i) $\quad P(A)$
(ii) $\quad P\left(A^{1} \cap B^{1}\right)$
(b)Bag P contains 3 green and 5 blue balls. Bag Q contains 2 green and 4 blue balls. Bag P is twice as likely to be picked as bag Q.A bag is selected at random and two balls are drawn from it one at a time without replacement. Find the probability that they are ;
(i) Both green.
(ii) Both green from bag Q.
10. The table below shows the prices of items (in shs) and prices of items during the years 2019 and 2020 .

items	2019 Prices	2020 priceindiceswith 2019as thebase year
X	3000	150
Y	5000	120
Z	4000	125
W	3500	85

(a) Calculate the price for each item in 2020.
(b) Taking 2019 as the base year and using the weights $3,2,5$ and 4 for items $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W respectively. Calculate the ;
(i) Weighted average price index for 2020.
(ii) Weighted aggregate price index for 2020.
11. (a) Derive the Newton Raphson Formula for finding the natural logarithm of the reciprocal of a number N.
(c) Hence find $\operatorname{In}\left(\frac{2}{3}\right)$ correct to 3 decimal places using $x_{0}=-0.35$.
12. A student used the trapezium rule with 6 strips to estimate $\int_{0}^{0.5}\left(\cos x-x^{2}\right) d x$ correct to 3 decimal places.
Determine;
(a) The value the student obtained.
(b) The actual value of the integral.
(c) How the student can reduce the error.
13. A random variable X has a probability density function given by ;

$$
f(x)= \begin{cases}\frac{1}{4} x & ; 0 \leq x \leq a \\ \frac{1}{4}(4-x) & ; a \leq x \leq b \\ 0 & ; \text { otherwise }\end{cases}
$$

(a) Determine the value of a and b.
(b) Find $P(x \leq 3 / x>1.5)$.

