IONIC EQUILIBRIA

ACID-BASE EQUILIBRIA

Arrhenius theory of acid and base

Acid

Is a substance which on dissolving in water produces hydrogen ions.

Base

- Is a substance which on dissolving in water produces Hydroxyl ions
- Is a substance which combines with an acid to form a salt and water

Brønsted – **Lowry theorem**

<u>Ac</u>id

Is a substance which donates a proton (*proton donor*)

Base

Is a substance which accepts a proton (proton acceptor)

Examples include;

a)
$$HCl_{(aq)+} NH_{3(aq)} \rightarrow Cl^- + NH_{4}^+$$

Acid; Base; conjugate conjugate

Base of acid of HCl NH₃

(b) HCl + H₂O
$$\rightarrow$$
 H₃ O^+ + Cl⁻ Conjugate Acid; base;

(Hydronium/oxorium/hydroxonium)

(c.)
$$H_2O+NH_3 \rightarrow \bar{O}H + NH_4^+$$

Conjugate conjugate Base; acid;

NB

i.

Are acids which readily donate a proton to another molecule (base) eg H₂SO₄, etc ii.

Weak acids

Are acids which do not easily lose its proton with difficult eg

CH₃COOH ie
$$\leftarrow$$
 CH₃OŌ (aq) + H⁺
H₂SO₃ (aq) \leftarrow H⁺+ HSO₃

iii.

Strong base;

A base which has a high affinity for protons eg NaOH

Lewis acid theory

Acid;

• Is a substance which can accept a pair of electrons.

Base

Is a substance which donates a pair of electrons in a dative covalent bond

$$\begin{array}{cccc} Eg & (i) & F_3B & + & NH_3 {\longrightarrow} F_3B \leftarrow :NH_3 \\ & acid & base \end{array}$$

(ii)
$$Cu(aq) + 4NH_3(aq)$$

IONISATION CONSTANTS OF ACIDS AND BASES

a) Ionisation constants of weak acids (Ka)

Consider a weak monobasic acid(HA) of concentration C which ionizes in solution as follows;

HA(aq)
$$H_{2}(aq) + A^{-}(aq)$$
HA(aq) $H_{2}(aq) + A^{-}(aq)$
HA(aq) $H_{3}(aq) + H_{3}(aq) + H_{3}(aq)$

Ka $= \frac{[H^{+}(aq)][A^{-}(aq)]}{[HA(aq)]}$, but $[HA] = C$

Ka $= \frac{[H^{+}(aq)][A^{-}(aq)]}{C}$
At equilibrium; $[H^{+}] = [A^{-}]$

Ka $= \frac{[H^{+}][H^{+}]}{C}$

Eg .CH₃COOH (aq) $CH_{3}(aq) + CH_{3}(aq) + CH_{3}(aq)$

Ka $= \frac{[H^{+}][CH_{3}(aq)]}{[CH_{3}(aq)]}$
At equilibrium $[H^{+}] = [CH_{3}(aq)]$

Ka $= \frac{[H^{+}][CH_{3}(aq)]}{[CH_{3}(aq)]}$
At equilibrium $[H^{+}] = [CH_{3}(aq)]$

Ka $= \frac{[H^{+}]^{2}}{[CH_{3}(aq)]}$

Relationship between Ka and degree of Dissociation, a

Consider a weak monobasic acid(HA) of concentration C and degree of dissociation, a

Initial moles;
$$C$$
 — $C\alpha$ —

Example

1. The acid dissociation constant of a dibasic acid is $4.39 \times 10^{-5} mol^2 dm^{-6}$ at 25° C, Calculate the degree of ionization of a 0.01M solution of the acid. **UNEB 2010**

Solution

For weak acids,
$$Ka = \frac{c \alpha^2}{(1-\alpha)}$$
, But also for weak acids; $\alpha <<<<1$,
$$(1-\alpha) \cong 1$$

$$K_a = C\alpha^2$$

$$4.39 \times 10^{-5} = 0.01 \ \alpha^2$$

$$\alpha = \sqrt{\frac{4.39 \times 10^{-5}}{0.01}}$$

$$\alpha = 0.066$$

 $\alpha = 6.6\%$

Activity

1. Calculate the degree of dissociation of a 0.01M ethanoic acid if K is $1.0 \times 10^{-5} mol^2 dm^{-6}$ at 298K

b) Ionisation constant for weak bases; K_b

Consider a weak base BOH of concentration C which ionizes in solution as follows.

BOH (aq)
$$B^{+}(aq) + \overline{O}H(aq)$$
 $Kb = \frac{[B^{+}][\overline{O}H]}{[BOH]}$ but $[BOH] = C \text{ moldm}^{-3}$
 $Kb = \frac{[B^{+}][\overline{O}H]}{[c]}$ At equilibrium; $[B^{+}] = [\overline{O}H]$;

 $Kb = \frac{[\overline{O}H]^{2}}{c}$

Assumptions

- ✓ At equilibrium; $[B^+] = [\bar{O}H]$:
- ✓ Concentration of unionized base is equal to the original concentration; because proportion of molecules ionized is small.

Relationship between Kb and a

Consider a weak base BOH of concentration C and degree of dissociation, a

BOH (aq)

Initial concentration
$$C$$

Reacted moles $C\alpha$

Equilibrium concn $C - C\alpha$
 $C\alpha$
 $C\alpha$

But for weak bases;
$$\alpha <<<1, (1 - \alpha) \cong 1$$

$$K_b = C\alpha^2$$

$$\alpha = \sqrt{\frac{K_b}{c}}$$

Activity

- 1.
 - i. An equation for the ionization methylamine in water
 - The expression for the base dissociation constant, Kb for Methylamine ii.
- At 25°C Ammonia has a base ionization constant, Kb of 1.8×10⁻⁵ moldm⁻³ 2.
 - a) Write an expression for Kb of Ammonia
 - b) Calculate the concentration of ŌH in 0.1M Ammonia solution at 25°C

State any assumptions made (1997 No. 11 Paper 1, part of question)

IONISATION OF WATER

Pure water undergoes self-ionization as follows

$$H_2O(l)$$
 H^+ (aq)+ $\bar{O}H$ (aq)

By law of mass action;

$$\mathbf{K}_{\mathrm{eq}} = \frac{[\mathbf{H}^+][\bar{\mathbf{0}}\mathbf{H}]}{[\mathbf{H}_2 \, \mathbf{0}]}$$

$$\mathbf{K}_{\mathrm{eq}}\left[\mathbf{H}_{2}\mathbf{O}\right] = \left[\mathbf{H}^{+}\right]\left[\bar{\mathbf{O}}\mathbf{H}\right]$$

Since the degree of ionization of water is small; $[H_2O_{(l)}] = constant$

 $K_{eq}.\ constant = [H^+][\bar{O}H],\ but\ K_{eq}.\ constant = K_w\ \ (ionization\ \ product\ of\ water/ionic\ product\ of\ water)$

$\mathbf{K}_{\mathbf{w}} = [\mathbf{H}^{+}][\bar{\mathbf{O}}\mathbf{H}]$

But pure water contains equal concentration of H⁺ and $\bar{O}H$ ions (1 × 10⁻⁷ moldm⁻³)

 $K_w = (1 \times 10^{-7} \text{moldm}^{-3})(1 \times 10^{-7} \text{moldm}^{-3})$

 $\underline{\mathbf{K}}_{w} = (1 \times 10^{-14} \text{moldm}^{-6})$

pН

Is the negative logarithm to the base 10 of the hydrogen ion concentration of a solution.

$$pH = -\log_{10}[H^+]$$

OR:

is the logarithm to base 10 of the reciprocal of the hydrogen ion concentration of a solution. i.e. $pH = \log_{10} \frac{1}{[H^+]}$

a) **pH of water:**

pure water contains equal concentration of hydroxyl and hydrogen ions (1 × 10⁻⁷moldm⁻³); pH = $-\log_{10}[H^+] = -\log_{10}[1 \times 10^{-7}]$ pH = 7

- b) pH of acids:
 - i. strong acids:

pH of strong acids depends only on its concentration because strong acid is fully ionized;

Examples

1. Calculate the pH of a 0.02M H₂SO₄

Solution

$$[H_2SO_4] = 0.02M$$

$$H_2SO_4 \rightarrow 2H^+_{(aq)} + SO^{2}_{4}^{-}_{(aq)}$$

1 mole of H₂SO₄ form 2 moles of H⁺

0.02moles of H₂SO₄ form (0.02) moles of H⁺

$$= 0.04 \text{ moldm}^{-3}$$

$$\Rightarrow$$
 [H⁺] =0.04 moldm⁻³

$$pH = -\log [H^+]$$
$$= -\log 0.04$$

2. Calculate the pH value of 2×10^{-3} moldm⁻³ of HNO₃

Solution

$$HNO_{3 \text{ (aq)}} \rightarrow H^+ + NO_{3}$$

1 mole of HNO_{3 (aq)} produces 1 mole H⁺

$$[HNO_3] = [H^+] = 2 \times 10^{-3} \text{moldm}^{-3}$$

ACTIVITY

- 1. Calculate the pH of the following concentration of the following acids
 - (a). $0.05 \text{moldm}^{-3} \text{ HCl}$ (b) $0.025 \text{moldm}^{-3} \text{ Sulphuric acid}$

NB: A strong acid of concentration > 1.0moldm⁻³; pH value < 0 eg for 2M HCl; pH = -0.3;

ii) pH of weak acids

Consider ionization of weak acid HA whose concentration is C moldm⁻³, and the degree of ionization α

$$HA_{(aq)} \longrightarrow H^{+}_{(aq)} + \overline{A}_{(aq)}$$

By law of mass action;

$$K_a = \frac{[H^+][A]}{[HA]}$$

But at equilibrium; $[H^+] = [\bar{A}]$

$$K_a = \frac{[H^+]^2}{c}$$
$$[H^+]^2 = K_aC$$

$$[H^+] = \sqrt{\text{KaC}} - \text{(i)}$$

Also;
$$\alpha = \sqrt{\frac{Ka}{c}}$$
(ii)

1. Calculate the [H $^+$] and the pH of a 0.01M solution of ethanoic acid. (K $_a$ =1.8 \times 10 $^{-5}$ moldm $^{-3}$)

 $\overline{\text{Concn of CH}_3\text{COOH}} = 0.01 \text{moldm}^{-3}, \ \text{K}_a = 1.8 \times 10^{-5}$

From $[H^+] = \sqrt{KaC}$

$$[H^+] = \sqrt{1.8 \times 10^{-5} \times 0.01}$$

 $[H^+] = 4.24 \times 10^{-4} \text{moldm}^{-3}$

pH =
$$-\log[H^+]$$

= $-\log(4.24 \times 10^{-4})$

$$= 3.37$$

- 2. The pH of a 0.001M solution of ethanoic acid is 3.59. Calculate the;
 - dissociation constant of the acid.
 - Degree of dissociation at the concentration given.

Solution

i.
$$pH = -log[H^+]$$

 $3.59 = -log[H^+]$
 $log[H^+] = -3.59$
 $[H^+] = log^{-1}(-3.59)$
 $= 2.57 \times 10^{-4} \text{moldm}^{-3}$

From
$$[H^+] = \sqrt{KaC}$$

$$[H^+]^2 = K_a C$$

$$K_a = \frac{[H^+]^2}{c} = \frac{(2.57 \times 10)^2}{0.001}$$

$$= 6.61 \times 10^{-5} \text{moldm}^{-3}$$

$$K_{a} = \frac{[H^{+}]^{2}}{c} = \frac{(2.57 \times 10)^{2}}{0.001}$$

$$= \underline{6.61 \times 10^{-5} \text{moldm}^{-3}}$$
ii.
$$\alpha = \sqrt{\frac{Ka}{c}} = \sqrt{\frac{6.61 \times 10^{-5}}{0.001}} = \underline{0.26}$$

- 1. A solution of 0.05M propanoic acid had a pH of 4. Calculate its degree of dissociation and hence dissociation constant Ka
- c) pH of bases

pH of bases can be obtained from the ionization pH of water. ie;

$$\begin{split} K_{w} &= [H^{+}][\bar{O}H] \\ \text{Taking} &= \log \quad \text{on both sides of the expression} \\ &= \log K_{w=-} \log \left(\left[H^{+} \right] [\bar{O}H] \right) \\ &= \log K_{w} = -\log \left[H^{+} \right] + \left[-\log \left[\bar{O}H \right] \right] \\ &= p K_{w} = p H + p O H \\ &= \text{from } K_{w} = 1 \times 10^{-14} \\ &= p K_{w} = -\log \left[K w \right] \\ &= p K_{w} = -\log \left[1 \times 10^{-14} \right] \\ &= p K_{w} = 14 \end{split}$$

i. pH of strong bases

Examples

1. Calculate the pH of 0.001M Potassium hydroxide

$$KOH_{(aq)} \rightarrow K^{+}_{(aq)} + \overline{\mathcal{O}}H_{(aq)}$$

1 mole of KOH produces 1 mole of \bar{O} H ions

[KOH] =
$$[\bar{O}H] = 0.001 \text{ moldm}^{-3}$$

pOH = $-\log (0.001)$
pOH = 3

pH = 14 - 3 = 11

But from
$$pK_w = pH + pOH$$

 $14 = pH + 3$

OR:

$$Kw = [\bar{O}H][H^{+}]$$

$$1 \times 10^{-14} = [\bar{O}H][H^{+}]$$

$$1 \times 10^{-14} = 1 \times 10^{-1$$

$$[H^{+}] = \frac{1 \times 10^{-14}}{\sigma_{H}} = \frac{1 \times 10^{-14}}{0.001} = 1 \times 10^{-11}$$

$$pH = -\log [H^{+}]$$

$$= -\log(1 \times 10^{-11})$$

$$pH = 11$$

ii. pH of weak bases

Consider a weak base BOH of concentration Cmoldm⁻³ and degree of dissociation, α

$$BOH_{(aq)} = B^+_{(aq)} + \overline{O}H_{(aq)}$$

By law of mass action,

$$Kb = \frac{[B^+][\bar{0}H]}{[BOH]} = \frac{[B^+][\bar{0}H]}{[C]}$$

At equilibrium, $[B^+] = [\bar{O}H]$

$$K_b = \frac{[\bar{O}H]^2}{c}$$
$$[\bar{O}H] = \sqrt{K_b C}$$
$$\alpha = \sqrt{\frac{K_b}{c}}$$

Example

1. Calculate the pH of 0.1M aqueous ammonia whose K_b is 1.5×10^{-6} .

Solution

$$\begin{split} NH_{3(aq)} + H_2O\left(l\right) & \longrightarrow NH_{\mathbf{4}}^{+}(aq) + \bar{\mathbf{O}}H_{(aq)} \\ K_b &= \frac{\left[NH_{\mathbf{4}}^{+}\right]\left[\bar{\mathbf{O}}H\right]}{\left[NH_{\mathbf{8}}\left(aq\right)\right]} \ , \quad \text{At equilibrium } [\bar{\mathbf{O}}H] = \left[NH_{\mathbf{4}}^{+}(aq)\right] \\ K_b &= \frac{\left[\bar{\mathbf{O}}H\right]^2}{\left[NH_{\mathbf{8}}\left(aq\right)\right]} \\ 1.5 \times 10^{-6} &= \frac{\left[\bar{\mathbf{O}}H\right]^2}{0.1} \end{split}$$

$$[\bar{O}H]^2 = 1.5 \times 10^{-6}$$

 $[\bar{O}H] = \sqrt{1.5 \times 10^{-6}} = 3.87 \times 10^{-4} \text{ moldm}^{-3}$
 $pOH = -\log (3.87 \times 10^{-4})$
 $= 3.41$
From $pH = pKw - pOH$
 $= 14 - 3.41 = 10.587$

ACTIVITY

- 1. 0.01M solution of phenylamine is 7.5% ionized
 - (a) Write the expression for dissociation of phenylamine
 - (b) Calculate;
 - (i) K_b
 - (ii) pH of the solution

BUFFER SOLUTION

Buffer solutions are solutions which resist changes in their pH when small amounts of acid or base is added to them.

Types of buffer solutions

(i)acidic buffer

- consists of solution of a weak acid and its salt from a strong base. eg *acetic acid and sodium acetate*, supplying a conjugate base of weak acid.
- Maintain nearly a constant pH value less than 7

(ii) Basic buffer

- Consists of a solution of a weak base and its salt from a strong acid. Eg ammonium hydroxide and ammonium chloride, supplying a conjugate acid of weak base.
- Maintain nearly a constant pH value above 7

a) Action of acidic buffer:

Consider a solution of weak acid(acetic acid) and its highly ionisable salt (sodium acetate)

Acetic acid is a weak acid, is not fully ionized while sodium acetate is a strong electrolyte, fully ionized.

$$\text{CH}_3\text{COOH}_{(\text{aq})} \xrightarrow{\longleftarrow} \text{CH}_3\text{CO}\bar{O}_{(\text{g})} + H^+_{(\text{aq})}$$
 $\text{CH}_3\text{COONa}_{(\text{aq})} \xrightarrow{\longrightarrow} \text{CH}_3\text{CO}\bar{O}_{(\text{g})} + \text{Na}^+_{(\text{aq})}$

- * Solution contains excess of acetate ions and a large amount of unionized acetic acid, and a small amount of hydrogen ions.
- Addition of H^+ to this solution (inform of acid eg HCl) will combine with the acetate ions forming unionized acetic acid.

 $CH_3CO\overline{O}_{(aq)} + H^+_{(aq)}$

- H^{+} are removed by excess ethanoate ions already present, solution retains its constant pH value.
- addition of $\overline{O}H$ ions to this solution from a base, it will be removed by reacting with the unionized acetic acid.

$$CH_3COOH_{(aq)} + \overline{O}H_{(aq)} \rightleftharpoons CH3CO\overline{O}_{(aq)} + H_2O(l)$$

the solution also maintains its pH value.

pH calculations of acidic buffers

Consider a buffer solution consisting of acetic acid and sodium acetate

CH₃COOH_(aq) CH₃CO
$$\bar{O}_{(g)} + H^{+}_{(aq)}$$
CH₃COONa_(aq) \rightarrow CH₃CO $\bar{O}_{(g)} + Na^{+}_{(aq)}$

$$K_{a} = \frac{[cH_{s} coof][H^{+}]}{[cH_{s} cooH]}$$

$$[H^{+}] = \frac{K_{\alpha}[CH_{s} cooH]}{[cH_{s} cooH]}$$

Assumptions:

- CH₃COONa is a strong electrolyte; fully ionizes; $[CH_3CO\bar{O}] = [salt]$
- CH₃COOH is a weak acid, [CH₃COOH] = [acid] Therefore $[H^+] = \frac{K_a[acid]}{[salt]}$

Therefore
$$[H^+] = \frac{K_a[acid]}{[salt]}$$

Taking –log on both sides of the expression;

$$-\log [H^{+}] = -\log \frac{K_{a}[acid]}{[salt]}$$

$$-\log [H^{+}] = -\log K_{a} + -\log \frac{[acid]}{[salt]}$$

$$pH = pK_{a} - \log \frac{[acid]}{[salt]}$$

$$pH = pK_{a} + \log \frac{[salt]}{[acid]}$$
"The Henderson – Hassel balch equation"

Examples

1. (a) Calculate the pH of a buffer solution which consists of 4.1g of Sodium ethanoate per litre of solution and 0.01M ethanoic acid whose $K_a = 1.7 \times 10^{-5} \text{moldm}^{-3}$

solution

Relative molecular mass of CH₃COONa = $(2\times14)+(2\times0_{16})+(3\times1)+23=82$

1 mole of CH₃COONa weighs 82g

X moles of CH₃COONa weighs 4.1g

$$X = (\frac{4.1}{82}) = 0.05 \text{ moldm}^{-3}$$

[acid] = 0.01

$$CH_3COOH_{(aq)}$$
 \longrightarrow $CH_3COO\bar{O}_{(aq)} + H^+_{(aq)}$
 $CH_3COONa_{(aq)} \rightarrow CH_3COO\bar{O}_{(aq)} + Na^+_{(aq)}$

From the *Henderson – Hassel balch equation*;

$$pH = pK_a + log \frac{[salt]}{[acid]}$$

$$\begin{split} pH &= -log K_a + log \frac{[salt]}{[acid]} \\ pH &= -log (1.7 \times 10^{-5}) + log \frac{[0.05]}{[0.01]} \end{split}$$

pH = 5.47

- (b). Calculate the pH change of the solution above if;
 - (i) 1cm³ of 1M NaOH is added
 - (ii) 1cm³ of 1M HCl is added

Solution

1000cm³ of NaOH contain 1 mole

1cm³ of solution contains
$$\left(\frac{1}{1000}\right)$$
 moles of NaOH
= 0.001 moles of NaOH

$$[NaOH] = [\bar{o} H] = 0.001 \text{ moles}$$

 \bar{O} H ions reacts with unionized acetic acid, decreases the concentration of acid, increasing the concentration of salt (CH₃CO \bar{O})

CH₃COOH_{(aq) +}
$$\bar{O}$$
 $H_{(aq)}$ \longrightarrow CH₃CO $\bar{O}_{(aq)}$ + H₂O
New [salt] = 0.05+ 0.001= 0.051 mol 1⁻¹
New [acid] = 0.01 - 0.001 = 0.009 mol 1⁻¹
From pH = pK_a + $log \frac{[salt]}{[acid]}$
pH = $-log(1.7 \times 10^{-5}) + log \frac{[0.051]}{[0.009]}$
pH = 4.7696 + 0.753 = $\underline{5.523}$
change in pH = 5.523 - 5.47

change in pH = 0.053 units

(b) 1000cm³ of HCl contain 1 mole

$$1 \text{cm}^3$$
 of HCl contains $\left(\frac{1}{1000}\right)$ moles

$$[HC1] = [H^+] = 0.001 \text{ moldm}^{-3}$$

 $extbf{H}^+$ ions reacts with acetate ions, decreasing the concentration of salt, increasing the concentration of salt caid.

$$CH_{3}CO\overline{O}_{(aq)} + H^{+}_{(aq)} \qquad CH_{3}COOH_{(aq)}$$
New [salt] = 0.05 - 0.001 = 0.049 moldm⁻³
New [acid]= 0.01 + 0.001 = 0.011 moldm⁻³
From pH = pK_a + log [salt] [acid]
$$pH = -log(1.7 \times 10^{-5}) + log [0.049] [0.011]$$

$$pH = 5.418$$
change in pH = 5.418 - 5.47 = -0.052 units

2. Calculate the mass of Sodium ethanoate that should be added to 0.1M ethanoic acid at 25°C to give a solution of pH 5.5.

State any assumptions made (Ka of ethanoic acid = 1.8×10^{-5} moldm⁻³)

Solution

From
$$pH = pK_a + log \frac{[salt]}{[acid]}$$

5.5 =
$$-\log K_a + \log \frac{[salt]}{[acid]}$$

5.5 = $-\log (1.8 \times 10^{-5}) + \log \frac{[salt]}{[0.1]}$

$$log [salt] = -0.245$$

$[salt] = 0.569 \text{mol l}^{-1}$

RMM of $CH_3COONa = 82$.

1 mole of CH₃COONa weighs 82g

0.569 moles of CH₃COONa weigh $(82 \times 0.569) = 46.62g$

Mass of $CH_3COONa = 46.62g$

Activity UNEB 2001(paper 1 no.15, 1999(p1 No. 12), 2007 p1. 13a)

(b) Action of basic buffers

Consider a solution of weak base(ammonium hydroxide) and its highly ionisable salt(Ammonium chloride)

-NH₄OH partially ionizes while NH₄Cl fully ionizes both producing NH₄

- -Solution contains excess of NH₄⁺, a large amount of unionized ammonium hydroxide, and a small amount of hydroxyl ions.
- -Addition of a small amount of strong acid, HCl ,hydrogen ions added are removed by ammonium hydroxide;

$$NH_4OH_{(aq)} + H^+_{(aq)} \longrightarrow NH^+_{\Delta^{(aq)}} + H_2O$$

- -Solution suffers no change in pH
- -Addition of a small amount of a base, \bar{O} H added are removed by reacting with NH $_{4}^{+}$ forming unionized ammonium hydroxide/ ammonia and water, thus

-pH remains constant;

$$NH_{\mathbf{4}^{(aq)}}^{+}+\overline{\mathcal{O}}H_{(aq)}$$
 \longrightarrow $NH_{4}OH_{(aq)}$ $(NH_{3(aq)}+H_{2}O_{(l)})$

pH calculation of Basic buffers:

• Consider a buffer solution consisting of ammonium hydroxide and ammonium chloride.

$$NH_4OH_{(aq)} \longrightarrow NH_{\mathbf{4}}^{+}(aq) + \overline{\mathbf{O}}H_{(aq)}$$

$$NH_4Cl_{(aq)} \longrightarrow NH_{\mathbf{4}}^{+}(aq) + Cl_{(aq)}^{-}$$

By law of mass action;
$$K_b = \frac{[NH_4^+][\sigma H]}{[NH_4 OH]}$$

$$K_b[NH_4OH] = [NH_4^+][\bar{O}H]$$

$$\left[\overline{O}H\right] = \frac{\text{Kb[NH}_4 \text{OH]}}{\text{NH}_4^+}$$

Assumptions

i. Concentration unionized NH₄OH is equal to the concentration of base.

ii. NH₄Cl fully ionizes,[NH
$$_{4}^{+}$$
] = [salt]

Therefore $[\bar{O}H] = K_b \frac{[base]}{[salt]}$
 $-\log[\bar{O}H] = -\log K_b + -\log \frac{[salt]}{[acid]}$
 $pOH = pK_b - \log \frac{[salt]}{[acid]}$
 $pOH = pK_b + \left(\log \frac{[salt]}{[acid]}\right)^{-1}$

$$pOH = pKb + log \frac{[salt]}{[base]}$$
 But $pKw = pH + pOH$

$$pH = pKw - pKb + log \frac{[salt]}{[base]}$$

Examples

- 1. A solution consists of 0.01M ammonia solution and 2.13g of ammonium chloride in a litre of solution (Kb for NH₄OH = 1.8×10^{-5} moldm⁻³)
 - a) Calculate the pH of the solution
 - b) pH change of solution on addition of 1cm³ of 1M HCl

Solution

Relative molecular mass of $NH_4Cl = 53.5$

1 mole of NH₄Cl weighs 53.5g

X mole of NH₄Cl will weigh 2.13g

$$X = [NH_4Cl] = \frac{2.13}{53.5} = 0.0398 \text{mol } l^{-1}$$

From pOH = pKb +
$$log \frac{[salt]}{[base]}$$
 = $-log (1.8 \times 10^{-5}) + log \frac{0.0398}{0.01} = 5.345$

$$pKw = pH + pOH$$
, $pH = pKw - pOH = 14-5.345 = 8.655$

moles of HCl b)

1000cm³ of solution contains 1 mole of HCl

$$1 \text{cm}^3$$
 of solution contains $\left(\frac{1}{1000}\right)$ moles

$$HCl_{(aq)} \rightarrow H^{+}_{(aq)} + Cl_{(aq)}$$

1 mole of acid produces 1 mole of H⁺_(aq)

Concentration of $H^+ = 0.001$ moles

$$H^{+}_{(aq)} + NH_4OH_{(aq)} \rightarrow NH^{+}_{4}_{(aq)} + H_2O(l)$$

New [salt] = $0.0398 + 0.001 = 0.0408 \text{ mol } l^{-l}$

New [Base] =
$$0.01 - 0.001 = 0.009 \text{mol } l^{-l}$$

pOH = $-\log (1.8 \times 10^{-5}) + \log \frac{0.0408}{0.009}$
pOH = 5.401
pH = $14 - 5.401 = 8.59885$
pH change = $8.655 - 8.59855$
pH change = 0.056units

2. calculate the pH of the solution which was made by adding 30cm^3 of 0.1M HCl to 80cm^3 of 0.1M ammonia solution ($K_b = 1.8 \times 10^{-5} \text{mol} l^{-1}$)

Solution

Moles of acid

1000cm³ of solution contains 0.1 moles of acid

$$30\text{cm}^3$$
 of solution contains $\left(\frac{0.1}{1000} \times 30\right)$

= 0.003 moles

Moles of NH₄OH

1000cm³ of solution contains 0.1moles of base

$$80 \text{cm}^3$$
 of solution contains $\left(\frac{0.1}{1000} \times 80\right)$

$$NH_4OH_{(aq)} + HCl_{(aq)} \rightarrow NH_4Cl_{(aq)} + H_2O$$

Moles of acid that reacted = 0.003 = [salt]

Moles of base that reacted = 0.003

Moles of excess base = 0.008 - 0.003

= 0.005 moles

Excess NH₄OH and salt formed (NH₄Cl) forms a basic buffer:

pOH = pKb + log
$$\frac{[salt]}{[base]}$$

pOH = -log (1.8×10^{-5}) + log $\left(\frac{0.003}{0.005}\right)$
pOH = **4.523**
pKw = pH + pOH
pH = 14 - 4.523
pH = **9.477**

Activity

- 1. 0.01M ammonia solution was 4.5% ionized when dissolved in water
 - a) Write the expression for the ionization of ammonia in water
 - b) Calculate the base dissociation constant, K_b
 - c) Calculate the concentration of ammonium chloride in grams per litre that must be added to the solution in (a) to give a pH of 8.83.

2. UNEB 2012 (2) NO. 3C

APPLICATIONS OF BUFFER SOLUTIONS:

- ✓ Controlling the pH of the reactions in industrial processes eg in fermentation process.
- ✓ electroplating metals
- ✓ Maintaining the pH of blood plasma constant i.e. 7.4 eg carbonic acid and its conjugate base ,HCO ,
- ✓ Used in preparations of standard solutions of definite pH
- ✓ Used in preservation of food.

✓ Control pH of shampoos.

SALT HYDROLYSIS

Is a process whereby a salt dissolved in water produces cations and anions which interact with water producing more H^+ and $\bar{O}H$ ions so that pH of the resultant solution is either greater than or less than 7.

(a) Hydrolysis of salt of strong base and weak acid.

These salts include;

- Sodium acetate (CH₃COONa), Sodium carbonate (Na₂CO₃), Sodium cyanide (NaCN) When Sodium acetate is dissolved in water;
 - ✓ Salt being a strong electrolyte; is highly dissociated and water is slightly dissociated.

$$H_2O_{(l)} \longrightarrow H^+_{(aq)} + \overline{OH}_{(aq)}$$

Unionized

water

$$CH_3COONa_{(aq)} \rightarrow CH_3CO\overline{O}_{(aq)} + Na^+_{(aq)}$$

- ✓ Acetate ions react with hydrogen ions from water resulting in the excess of hydroxyl ions $CH_3CO\bar{O}_{(aq)} + H_2O_{(l)}$ $CH_3COOH_{(aq)} + \bar{O}H_{(aq)}$
- ✓ More water molecules ionize to restore water equilibrium producing more hydroxyl ions in excess; solution will have pH greater than 7;

a) Hydrolysis constant K_h for a salt of a weak acid

Consider salt BA formed from combination of a weak acid HA and a strong base, BOH

$$\bar{A}_{(aq)} + H_2O_{(l)} \longrightarrow HA_{(aq)} + \bar{O}H_{(aq)}$$

By law of mass action; $K_h = \frac{[HA][OH]}{[A]}$ ------ (i) (Assumption H_2O is large in excess)

At equilibrium $[HA^+] = [\bar{O}H]$

$$Kh = \frac{[oH]^2}{[A^-]}$$

Since
$$[A^-]$$
 = [salt]

$$Kh = \frac{[OH]^2}{[salt]}$$

Relationship between Kh, Ka, Kw

Multiplying the denominator and numerator of the expression (i) by the concentration of hydrogen ions;

$$K_h = \frac{[\text{HA}][\text{OH}]}{[\text{A}]} \times \frac{[\text{H}^+]}{[\text{H}^+]}$$

$$K_h = \frac{[HA]}{[A][H^+]} \cdot [\bar{O}H] [H^+]$$

But
$$[\bar{O}H][H^+] = Kw$$
 and $Ka = \frac{[HA]}{[A][H^+]}$

$$K_{h} = \frac{1}{K_{a}} K_{w}$$

$$K_h = \frac{K_w}{K_a}$$

Degree of hydrolysis of a salt of weak acid and strong base:

-Is the fraction of the total salt that undergoes hydrolysis when equilibrium has been established; Consider a salt of initial concentration, C moldm⁻³, degree of hydrolysis, h

At equilibrium $[\bar{O}H] = [HA]$

$$K_h = \frac{[\sigma H]^2}{[A]} = \frac{c h \cdot c h}{c - c h} = \frac{c^2 c^2}{c(1-h)}$$

 $K_h = \frac{ch^2}{(1-h)}$; For dilute solution, h is very small, $1-h \cong 1$

$$\mathbf{h} = \sqrt{\frac{\kappa_h}{c}} \underline{\mathbf{Examples}}$$

1. Calculate the degree of hydrolysis of 0.1M solution of potassium cyanide. (dissociation constant of hydrogen cyanide at 25° C is 7.2×10^{-10} moldm⁻³)

Solution

From
$$K_h = \frac{K_W}{K_a} = \frac{1 \times 10^{-14}}{7.2 \times 10^{-10}}$$

$= 1.388889 \times 10^{-5} \text{ moldm}^{-3}$

But
$$h = \sqrt{\frac{K_h}{c}}$$

 $h = \sqrt{\frac{1.388889 \times 10^{-5}}{0.1}}$

2. Calculate the pH of solution of sodium ethanoate made by dissolving 8.4gdm⁻³ in water ($K_h = 5.5 \times 10^{-3}$ $10^{-10)} \, \text{moldm}^{-3}$

Solution

$$CH_3COONa_{(aq)} \rightarrow CH_3CO\overline{O}_{(aq)} + Na_{(aq)}^+$$

$$CH_3CO\overline{O}_{(aq)} + H_2O_{(l)} \longrightarrow CH_3COOH_{(aq)} + \overline{O}H_{(aq)}$$

$$K_h = \frac{[CH_g COOH][\overline{OH}]}{[CH_g COO]}$$

But at equilibrium $[CH_3COOH] = [\bar{O}H]$

$$Kh = \frac{[\overline{\sigma} H]^2}{[\mathcal{C} H_{\mathtt{S}} \mathcal{C} o \overline{\sigma}]} - - - - - (i)$$

RFM of CH₃COONa = 82

1 mole of CH₃COONa weighs 82g

X mole of CH₃COONa weighs 8.4g

$$X = \frac{8.4}{82} = 0.1024 \text{ moldm}^{-3}$$

From (i)
$$[\bar{O}H]^2 = 0.1024 \times 5.5 \times 10^{-10}$$

$$[\bar{O}H] = 7.5 \times 10^{-6} \text{ moldm}^{-3}$$
 $pOH = -\log [\bar{O}H]$
 $= -\log(7.5 \times 10^{-6})$
 $pOH = 5.125$
 $pH = pKw - pOH$
 $pH = 14 - 5.125$
 $pH = 8.875$
ACTIVITY

- 1. When a certain mass of sodium propanoate was dissolved in 1 litre of water, 10cm^3 of this solution required 7.0cm^3 of 6.0×10^{-3} M for complete neutralization. Calculate the mass of sodium propanoate dissolved in 1 litre of water (K h = 6.0×10^{-10})
- 2. The pH of a solution formed by dissolving 7.2g of sodium benzoate in 1litre of water is 8.6. Calculate the hydrolysis constant of sodium benzoate

b) Hydrolysis of a salt from strong acid and weak base eg NH₄Cl;

When NH₄Cl is dissolved in water;

-Salt being a strong electrolyte; is highly dissociated; and water partially ionizes.

$$NH_4Cl_{(s)} + {}_{(aq)} \rightarrow NH_4^+(aq) + Cl_{(aq)}^-$$

 $H_2O_{(l)} + \longrightarrow H_{(aq)}^+ \bar{O}H_{(aq)}$

- NH $_{4}^{+}$ reacts with $\bar{O}H$ ions from ionized water forming unionized NH₄OH
- -concentration of hydroxyl ions is decreased.
- -More water molecules ionize producing more hydrogen ions; molar concentration of hydrogen ions exceed the hydroxyl ions, pH becomes less than 7.

Hydrolysis constant of a salt from a weak base and strong acid

$$NH_{4}Cl_{(s)} + {}_{(aq)} \rightarrow NH_{4}^{+}(aq) + Cl_{(aq)}$$

$$NH_{4}^{+}(aq) + H_{2}O_{(l)} \longrightarrow NH_{4}OH_{(aq)} + H^{+}_{(aq)}$$

$$OR \quad NH_{4}^{+}(aq) + H_{2}O_{(l)} \longrightarrow NH_{3(aq)} + H_{3}O_{(aq)}$$

$$K_{h} = \frac{[NH4OH][H^{+}]}{[NH_{4}^{+}]}$$

$$At equilibrium [NH4OH] = [H^{+}]$$

$$K_{h} = \frac{[H^{+}]^{2}}{[NH_{4}^{+}]}$$

$$K_{h} = \frac{[H^{+}]^{2}}{[salt]}$$

$$[H^{+}] = \sqrt{K_{n}}[salt]$$

$$Degree of hydrolysis:$$

$$h = \sqrt{\frac{K_{h}}{C}}$$

$$K_{w} = \frac{K_{h}}{K_{b}}$$

Activity.

- 1. Given that the dissociation constant of ammonium chloride at 25° C is 1.8×10^{-5} . Calculate the hydrolysis constant and the degree of hydrolysis of ammonium chloride in 0.001M solution. What will be the hydrogen ion concentration of the solution?
- 2 (a). The pH of ammonium nitrate solution is 5.45. Explain this observation.
 - b) Calculate the hydrolysis constant of ammonium nitrate.
- 3. Methyl ammonium chloride undergoes hydrolysis according to the equation.

$$CH_3NH_3^+$$
 (aq) $+ H_2O_{(l)} - CH_2NH_{2(aq)} + H_3O^+$ (aq)

- a) Write the expression for its hydrolysis constant.
- b) When 6.7g of methyl ammonium chloride was dissolved in 500cm³ of water, the pH 2.33. Calculate the hydrolysis constant of the salt.
- c) Calculate the volume of the above solution that would react completely with 10cm³ of 0.25M Sodium hydroxide solution..
- 4. Calculate the pH of 0.001M solution of phenyl ammonium chloride whose $K_h = 1.8 \times 10^{-3}$ moldm⁻³.

ACID - BASE INDICATORS/ HYDROGEN ION INDICATORS

- Are substances that change colour according to the hydrogen concentration of the solution, in which they are added.
- Are weak acids or weak bases, therefore;
 - are slightly dissociated when dissolved in water.
 - Its colour depends on the colour of the undissociated molecule and anion

produced(negatively charged.)

INDICATOR FUNCTIONING

(a). Phenolphthalein (HPh)

 $HPh_{(aq)} + H_2O_{(l)}$ \longrightarrow $H_3O^+_{(aq)} + Ph^-_{(aq)}$ Colourless pink

Undissociated molecule anion produced;

In acidic solution with high concentration of H⁺,

- ✓ Hydrogen ions remove Ph⁻, equilibrium shifts from right to left.
- ✓ Solution contains an excess of HPh molecules; showing colourless

In alkaline solution, with high concentration of $\bar{O}H$,

- ✓ Addition of $\bar{O}H$ removes the hydroxonium ions, producing water, decreasing the concentration of H_3O^+ .
- ✓ Decrease in H₃O⁺ concentration disturbs the equilibrium; more of the HPh ionizes producing Ph[−] molecules; solution appears pink.
- (b). Methylorange

$$HA_{(aq)}$$
 $H^+_{(aq)} + A^-_{(aq)}$ $H^+_{(aq)} + A^-_{(aq)}$ $H^+_{(aq)} + A^-_{(aq)}$

In acidic solution, with high concentration of Hydrogen ions,

- ✓ Hydrogen ions remove A ions equilibrium shifts right to left.
- ✓ Solution contains an excess of HA molecules showing red colour;

In alkaline solution, with high concentration of hydroxyl ions;

- ✓ Addition of hydroxyl ions remove the hydrogen ions, producing water; decreasing concentration of hydrogen ions.
- ✓ More HA ionize producing A ions; colour of methyl orange appears yellow

OUESTION

- a) Explain what is meant by the term **acid base indicator**.
- b) Explain how phenolphthalein acts as an indicator.

INDICATOR CONSTANT (Kxn)

Consider unionized form of indicator, HIn which is a weak acid

$$HIn_{(aq)} \leftarrow H^+_{(aq)} + In^-_{(aq)}$$

Colour **x** Colour **y**

By law of mass action;

$$K_{In} = \frac{[H^+][In^-]}{In^-}$$

WORKING RANGES OF INDICATORS

✓ Is the range of hydrogen ion concentration/pH; over which different indicators change colour.

From
$$K_{In} = \frac{[H^+][In^-]}{[HIn]}$$
, $[H^+] = \frac{KIn \ [HIn^-]}{[In]}$

Taking negative logarithm on both sides

$$\log[H^+] = -\log K_{In} \, \frac{_{HIn}}{_{[In^-]}}$$

$$\log[H^+] = -\log K_{In} + -\log \frac{HIn}{In^-}$$

$$pH = p^{KIn} - log \frac{HIn}{In^{-}}$$

$$pH = p^{KIn} + \log \frac{In^{-}}{HIn}$$

 $pH = p^{KIn} + log \frac{In^{-}}{HIn}$ Henderson – Hasselbalch equation for Indicators

For colour Y; $[In^-] = 10[HIn]$

$$\Rightarrow$$
 pH = p^{KIn} + log $\frac{In^{-}}{HIn}$,

$$pH = p^{KIn} + 1$$

For colour X; [HIn]= 10[In]

$$\Rightarrow pH = p^{KIn} + \log \frac{In^{-}}{HIn}$$

$$pH = p^{Kin} -$$

$$pH = p^{Kin} \pm 1$$

Therefore range of pH over which indicator changes colour is $pH = p^{KIn} \pm 1$,

e.g for phenolphthalein, P^{Kin} (9.4), for pink (colour y), 9.4+1= 10.4; for colourless (colour x) 9.4-1=8.4, range of 8.3-10.4.

Table showing some indicators, their colours and pH ranges

Indicator	PKIn	pH range	Colour	
			Acid	Base
Thymol blue	1.51	1.2-2.8	red	yellow
Methyl orange	3.70	3.0-4.5	red	yellow
Methyl red	5.10	4.2-6.3	red	yellow
Phenolphthalein	9.4	8.3-10.0	colourless	pink
Bromo thymol blue	7.0	6.0-7.3	yellow	blue

 Universal indicator is a mixture of indicators which give a gradual change in colour over a wide range of pH.

pH CHANGES DURING ACID - BASE TITRATIONS

• Depends on the nature of acid and base used eg;

Strong base against strong acid (HCl Vs NaOH)

- -. At A, pH is low, HCl is a strong acid which completely ionizes producing many hydrogen ions. AB;
- Slow pH rise, hydrogen ion from acid is removed from hydroxyl ion added.
 BC:
- Asharp rise in pH, (4–10), is due to a small amount of Sodium hydroxide added at the end point;
 when equivalent amounts of acid and base are added
- pH at end point 7; neutral salt formed is not hydrolysed.
- Methyl red, phenolphthalein, Bromothymol blue are the most suitable indicators used.
 CD
- Rise in pH is due to excess NaOH added after the end point

Example

- 1. 20.0cm³ of a 0.02M sodium hydroxide was added to 30cm³ of 0.025M sulphuric acid. Calculate the;
 - a) Molar concentration of the hydrogen ions in the initial sulphuric acid.
 - b) Molar concentration of the hydrogen ions in the resultant solution
 - c) pH of the resultant solution (Uneb 1999 (No 5)

Solution

a)
$$H_2SO_{4(aq)} \rightarrow 2H^+_{(aq)} + SO^2 - {4 \choose 4}$$

1 mole of H_2SO_4 produces 2 moles of H^+ 0.025 moles of H_2SO_4 produces (2 × 0.025)

= 0.05M

b) Moles of Sulphric acid

1000cm³ of solution contains 0.025moles of H₂SO₄

$$30 \text{cm}^3$$
 of solution contains $\left(\frac{0.025 \times 30}{1000}\right)$ moles = 7.5×10^{-4} moles

Moles of sodium hydroxide

1000cm³ of solution contains 0.02 moles of NaOH.

20.0cm³ of solution contains
$$\left(\frac{0.02 \times 20}{1000}\right)$$
 moles = 4×10^{-4} moles

STRONG ALKALI VS WEAK ACID (CH₃COOH VS NaOH)

Titration curve of weak acid Vs strong base

Volume of NaOH added (cm³)

- pH of the ethanoic acid is slightly higher compared to that of HCl. Ethanoic acid is a weak acid, only
 partly ionized in solution producing few hydrogen ions.
- Addition of NaOH, OH from the NaOH reacts with H⁺ of the solution, leading to an increase in pH along AB
- pH at endpoint, when equivalent amounts of NaOH and CH3COOH are present is greater than 7 ie 9
 reason
- NaOH reacts with ethanoic acid to produce sodium ethanoate
 CH₃COOH_(aq) + NaOH_(aq) → CH3COONa(s)+ H₂O
- Salt formed undergoes hydrolysis producing excess \bar{O} H ions;

$$CH_3COONa_{(aq)} \rightarrow CH_3CO\overline{O}_{(aq)} + Na^+_{(aq)}$$

$$CH_3CO\overline{O}_{(aq)} + H_2O \rightleftharpoons CH_3COOH_{(aq)} + \overline{O}H_{(aq)}$$

- Excess $\overline{O}H$ produced rises the pH along BC from 8-10.
- Between CD rise in pH is due to the excess NaOH added
- **Phenolphthalein** is the most suitable indicator.

Example

1. Calculate the pH of the solution obtained when 20cm^3 of 0.1M NaOH is added to 10.0cm^3 of 0.1M CH₃COOH (Ka = $1.8 \times 10^{-5} \text{moldm}^{-3}$)

Solution

Moles of ethanoic acid

1000cm³ of solution contains 0.1 mole of CH₃COOH

 100cm^3 of solution will contain $\left(\frac{0.1 \times 100}{1000}\right)$ moles = 0.01 moles

Moles of NaOH

1000cm³ of solution contains 0.1 mole of NaOH

20cm³ of solution will contain **0.002** moles

$$CH_3COOH_{(aq)} + NaOH_{(aq)} \rightarrow CH_3COONa_{(aq)} + H_2O_{(l)}$$

1 mole of acid reacts 1 mole of NaOH to produce 1 mole of salt

0.002 moles of acid reacts 0.002 moles of NaOH to produce 0.002 moles of salt

Moles of unreacted / excess acid = 0.01 - 0.002 = 0.008moles

Total volume of solution = $100 + 20 = 120 \text{cm}^3$

120cm³ of solution contains 0.008 moles

 1000cm^3 of solution contains $\left(\frac{0.008 \times 1000}{120}\right)$ moles = 0.067 moles 1^{-1}

Salt formed and unreacted acid form a buffer solution;

$$pH = pKa + log \frac{[salt]}{[acid]}$$

[salt] = ?

120cm³ of CH₃COONa contains 0.002moles

1000cm³ of CH₃COONa contains
$$\left(\frac{0.002 \times 1000}{120}\right)$$
 moles = 0.01667M

$$\Rightarrow pH = -\log(1.8 \times 10^{-5}) + \log\left[\frac{0.01667}{0.067}\right]$$
- 4.14

activity UNEB: 2001 paper 2 (4b)

Titration of strong acids and weak base (HCl Vs NH₄OH)

<u>A:</u>

Low pH , HCl is a strong acid which fully ionizes in solution; giving a high concentration of hydrogen ions

AB;

As the NH₄OH is added;- \bar{O} H ions from the base reacts with hydrogen ions in solution, pH rises BC;

-pH rises from 3.5 to 6.5, ammonium solution reacts with HCl producing ammonium chloride.

-pH at end point is below 7;

Reason;-

$$NH_4OH + HCl_{(aq)} \rightarrow NH_4Cl_{(aq)} + H_2O_{(l)}$$

-Salt formed undergoes hydrolysis in water

$$\begin{aligned} NH_4Cl_{(aq)} &\rightarrow NH_{\stackrel{\bullet}{\mathbf{4}}^{(aq)}}^+ + Cl_{(aq)}^- \\ NH_{\stackrel{\bullet}{\mathbf{4}}^{(aq)}}^+ + H_2O_{(aq)} &\rightleftharpoons NH_4OH_{(aq)} + H_{(aq)}^+ \end{aligned}$$

- -Hydrolysis leaves excess of H⁺ ions; hence pH less than 7
- -Further rise in pH along CD is due to excess of NH₄OH is added.
- -Methyl orange is a suitable indicator.

Example

Calculate the pH of a solution when 100cm^3 of $0.1 \text{M NH}_4\text{OH}$ is added to 20 cm^3 of 0.1 M HCl (Kb for $\text{NH}_3 = 2.12 \times 10^{-5}$)

Solution

Moles of NH₄OH

1000cm³ of solution contains 0.1 moles of NaOH

$$100\text{cm}^3$$
 of solution contains $\left(\frac{0.1 \times 100}{1000}\right)$ moles = 0.01 moles

Moles of HCl

1000cm³ of solution contains 0.1 moles of HCl

$$20\text{cm}^3$$
 of solution contains $\left(\frac{0.1 \times 20}{1000}\right)$ moles = 2×10^{-3}

$$NH_4OH_{(aq)} + HCl_{(aq)} \rightarrow NH_4Cl_{(aq)} + H_2O_{(1)}$$

From the equation of reaction above,

Excess moles of base = (0.01 - 0.002) = 0.008 moles

Total volume =
$$(100 + 20) = 120 \text{cm}^3$$

120 cm³ of solution contains **0.008** moles of NH₄OH

1000 cm³ of solution contains
$$\left(\frac{0.008 \times 1000}{120}\right)$$
 moles of NH₄OH = 0.0167M

$$\begin{split} & \text{From } p^{\text{OH}} = p^{\text{Kb}} + \text{log} \frac{\text{[salt]}}{\text{[base]}} \\ & \Rightarrow p^{\text{OH}} \text{=-log} \big(2.12 \, \times 10^{-5} \big) + \text{log} \frac{\text{(0.0167)}}{\text{(0.0667)}} \\ & p^{\text{OH}} = 4.07 \\ & \Rightarrow \text{from } p^{\text{Kw}} = p^{\text{H}} + p^{\text{OH}} \\ & p^{\text{H}} = p^{\text{Kw}} - p^{\text{OH}} \\ & = 14 - 4.07 \\ & p^{\text{H}} = 9.93 \end{split}$$

Titrations of weak acids and weak bases eg CH3COOH and NH4OH

 $-p^{H}$ range between 6.5 - 7.5

-no suitable indicator can be used; there is no sharp change in pH art any point

Volumeof NH₄OHadded (cm³)

SOLUBILITY PRODUCT

Consider a sparingly soluble salt silver bromate, AgBrO₃

 $-AgBrO_3$ added to water, a saturated solution (containing both the ions & undissolved solute) is formed -Equilibrium is established between ions and excess undissolved solute , $AgBrO_3$

$$AgBrO_{3(s)} \rightleftharpoons Ag^{+}_{(aq)} + BrO_{3(aq)}^{-}$$

Excess

undissolved

Solute

By law of mass action,

$$Kc = \frac{[Ag^{+}(aq)][BrO_{3}^{-}(aq)]}{[AgBrO3(s)]}$$

Kc [AgBrO3]=[
$$Ag^+$$
][BrO $_3^-$]

But; [AgBrO3]= constant

 $Kc \times [AgBrO3] = Ksp (solubility product)$

Therefore,
$$Ksp = [Ag^{+}(aq)][BrO_{3}^{-}(aq)]$$

Generally for a saturated solution of a sparingly soluble salt

$$A_xBy_{(s)}{\rightleftharpoons}xA^{+y}_{(aq)}+yB_x_{(aq)}$$

$$\mathbf{Ksp} = [\mathbf{A}^{+\mathbf{y}}]^{\mathbf{x}} [\mathbf{B}^{-\mathbf{x}}]^{\mathbf{y}}$$

Definition

-Solubility product (Ksp) is the *product of the molar concentration of ions raised to their powers of stoichiometric coefficients in a saturated solution of a sparingly soluble salt of an ionic compound of a given temperature;*

ACTIVITY.

Write an expression for the solubility product of;

(i). Bi_2S_3 (ii). AgCl (iii). PbI_2 (iv). $Ca(OH)_2$

Limitations of solubility product/condtions of solubility product

- -Valid for only saturated solutions
- -Only valid at constant temperature
- -Only applied for sparingly soluble salts

Example

1. The solubility of Calcium hydroxide in water at 20°C is 2.78gdm⁻³. What is the solubility product (Ca = 40, O = 16, H = 1)

Solution:

Relative formula mass of Ca(OH)₂ = $40 + (16 \times 2) + (1 \times 2) = 74$

1 mole of Ca(OH)₂ weighs 74g

X mole of Ca(OH)₂ will weigh 2.78

: Molarity =
$$\frac{2.78}{74}$$
 = 0.038dm⁻³ [Ca(OH)₂] = 0.038dm⁻³

$$[Ca(OH)_2] = 0.038 dm^{-3}$$

$$Ca(OH)_{2 (s)} \rightleftharpoons Ca^{2+}_{(aq)} + 2\bar{O}H_{(aq)}$$

 $[Ca^{2+}] = 0.038dm^{-3}$

$$[Ca^{2+}] = 0.038 dm^{-3}$$

$$[\bar{O}H] = 2 \times 0.038 = 0.076 \text{moldm}^{-3}$$

Ksp =
$$[Ca^{2+}] [\bar{O}H]^2$$

= $0.038 \times (0.076)^2$

$$Ksp = 2.19 \times 10^{-4} \text{mol}^3 \text{dm}^{-9}$$

2. The solubility product of silver Carbonate at 20° C is 8×10^{-2} mol³dm⁻⁹. What is the solubility at this temperature?

Solution

From,
$$Ag_2CO_{3(s)} \rightleftharpoons Ag^+_{(aq)} + CO^{2}_{3}^{(aq)}$$

If the solubility of $Ag_2CO_{3(s)}$ is $S\ moldm^{-3}$

$$[Ag^+] = 2S \text{ moldm}^{-3}$$

$$[CO_3^2] = S \text{ moldm}^{-3}$$

$$Ksp = [Ag^{+}][CO_{3}^{2}]$$

$$8 \times 10^{-2} = (2S)^2 S$$

$$8 \times 10^{-2} = 4S^3$$

Solubility = 0.27 moldm⁻³

Activity:

- 1. Calculate the solubility of silver ethanedioate $(Ag_2C_2O_4)$ in water. (Ksp of $Ag_2C_2O_4 = 5 \times 10^{-12}$
- 2. The solubility of AgCl at 18° C is 1.46×10^{-3} gdm⁻³. What is the solubility product (Ag = 108, Cl = 35.5)
- 3. The solubility product of calcium Phosphate at 25° C is 6×10^{-29} mol⁵ dm⁻¹⁵. Calculate the solubility of Calcium phosphate in gdm⁻³ at 25^oC.

FACTORS AFFECTING THE SOLUBILITY OF SPARINGLY SOLUBLE SALT.

(i) Common ion effect:

-Is the precipitation of a sparingly soluble ionic compound from a saturated solution by addition of another soluble compound containing a similar ion

Consider a saturated solution of PbSO₄:

$$PbSO_4 \rightleftharpoons Pb^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

Addition of Pb(NO₃)₂ solution;

- -More Pb²⁺ ions, a common ion is produced; increasing the concentration of Pb²⁺ in the equilibrium.
- -To restore the equilibrium, excess Pb^{2+} from Pb (NO₃)₂ reacts with SO_4^{2-} to precipitate $PbSO_4$
- -This decreases solubility of PbSO₄

Example:

- 1. Calcium iodate, Ca(IO₃)₂ is sparingly soluble in water. Write an,
 - (a) (i) equation for the solubility of Ca $(IO_3)_2$
 - (ii) expression for the solubility product Ksp of Ca(IO₃)₂
 - (b) If the Ksp of $Ca(IO_3)_2$ at $25^{\circ}C$ is 1.95×10^{-4} moldm⁻³. Calculate the solubility in moldm⁻³. Calculate the solubility in moldm⁻³ at $25^{\circ}C$.
 - i. In water
 - ii. 0.1M solution of NaIO₃.
 - (c) Comment on your answer in (b) above UNEB 2006(1) No. 17

1 (a)(i)
$$Ca(IO_3)2_{(s)} \rightleftharpoons Ca^{2+}_{(aq)} + 2IO_{\mathbf{3}^{(aq)}}$$

(ii)
$$Ksp = [Ca^{2+}][IO_{3}^{-}]^{2}$$

(b) (i). From,
$$Ca(IO_3)_{2(s)} \rightleftharpoons Ca^{2+}_{(aq)} + 2IO_{3(aq)}$$

Let the solubility of Ca(IO₃)₂ be m moldm⁻³

$$\Rightarrow$$
 [Ca²⁺] = m [IO $_{\mathbf{3}}^{\mathbf{7}}$] = 2m

From Ksp =
$$[Ca^{2+}][IO_3^{-}]^2$$

$$\implies 1.9 \times 10^{-4} = (m)(2m)^2$$

$$4m^3 = 1.9 \times 10^{-4}$$

$$m = \sqrt[8]{\frac{.9 \times 10^{-4}}{4}}$$

$$= 0.036 \text{moldm}^{-3}$$

Solubility of Ca (IO₃)₂ is 0.036moldm⁻³ in water

(ii) 0.1M of NaIO₃

$$NaIO_{3(aq)} \rightleftharpoons Na^{+}_{(aq)} + IO_{3(aq)}$$

Let the new solubility of Ca(IO₃)₂ in iodate solution be S' moldm⁻³

$$Ca(IO_3)_{2(s)} \rightleftharpoons Ca^{2+}_{(aq)} + 2IO_{3}$$

Solubility of $Ca^{2+} = S' \text{ moldm}^{-3}$

Solubility of IO
$$_{3}$$
 = (2S' + 0.1)

But S'
$$\ll \ll 0.1$$
, $(2S' + 0.1) \cong 0.1$

$$Ksp = [Ca^{2+}] [IO_{3}^{-}]$$

$$1.95 \times 10^{-4} = S'(0.1)^2$$

Solubility of $Ca(IO_3)_2$ in iodate solution S' = 0.0195moldm⁻³

(c.) Comment

- Solubibilty of $Ca(IO_3)_2$ in $NaIO_3$ is lower than that in water; because in $NaIO_3$ concentration of IO_3 is higher; therefore IO_3 react with Ca^{2+} to precipitate out $Ca(IO_3)_2$.

Activities:

UACE 2000(1) no 12, 2005(1) no 17, 2004(1) no 17, 2003(1) no 17, 2001(1) no 16(a, b(i).

ii) Complex ion formation:

-Increases solubility of a sparingly soluble salt i.e.

Consider solubility of AgCl in water,

$$AgCl_{(s)} + \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

 Addition of ammonia solution, ammonia reacts with silver ions, forming diamine silver ion complex.

$$Ag^{+}_{(aq)} + 2NH_{3(aq)} \rightleftharpoons [Ag(NH_3)_2]^{+}$$

- Concentration of Ag⁺ decreases;
- to restore equilibrium, AgCl solid ionizes to produce more Ag⁺ ions, increasing the solubility.

Example.

- a) State how the solubility of Ag₂SO₄ is affected if the following substances were added;
 - i) Na_2SO_4
 - ii) NH₄OH
- b) Explain your answer in (a) (UACE, 2001(1) no.16 (b)

Solution

- a) (i). solubility would decrease
 - (ii) Solubility would increase
- b) a(i)
 - Na₂SO₄ is a strong electrolyte; therefore strongly ionizes in aqueous solution to form a higher concentration of SO₄ ions
 - Ag⁺ react with excess SO₄²⁻ ions; forming solid silver sulphate, Ag₂SO₄; hence decreasing solubility.
 - (ii) Ammonia react with Ag⁺ to form a complex; decreasing the concentration of Ag⁺ in solution; therefore more silver sulphate dissolves to restore the equilibrium, hence increasing solubility of the salt.

APPLICATION OF COMMON ION EFFECT

- i. Purification of common salt: (NaCl)
 - -NaCl contains small quantities of MgCl₂ and CaCl₂ as impurities.
 - -This causes it to be deliquesecent (absorb water from the atmosphere and appear damp)
 - -Pure NaCl is obtained by passing HCl gas into a saturated solution of impure NaCl (Addition of

HCl gas provides Cl which precipitate only pure NaCl)

ii. Salting out of soap:

Saturated solution of soap, sodium stearate (Nast) contains the following ions;

$$Nast_{(s)} \rightleftharpoons Na^+_{(aq)} + St^-_{(aq)}$$

During saponification (soap making), concentrated solution of NaCl is added

More Na⁺ are produced, excess Na⁺ react with St⁻ to precipitate soap

$$Na^{+}_{(aq)} + St^{-}_{(aq)} \rightarrow NaSt_{(s)}$$

APPLICATIONS OF SOLUBILITY PRODUCT ON QUALITATIVE ANALYSIS

-Used in predicting precipitation of salts eg sulphides, hydroxides, chlorides, etc

NB: For saturated solution, ionic product is equal to solubility Product; therefore can be used to predict whether or not precipitation occurs.

Therefore if,

- i. Ionic product is greater than the solubility product, solution is **supersaturated**, precipitation will occur
- ii. If ionic product is less than the solubility product, solution is **unsaturated**, precipitation will occur not occur.

Example:

1. Predict whether or not precipitation occurs when 0.001moldm^{-3} solution of Ca^{2+} is mixed with an equal volume of a 0.001moldm^{-3} solution of SO_{4}^{2-} at 25°C . (Ksp of $\text{CaSO}_{4} = 2 \times 10^{-5} \text{mol}^{2} \text{dm}^{-6}$ at 25°C). Show your working.

Solution

-Mixing equal volumes of the two ions, molar concentration of the ions are halved, because each solution is diluted by mixing with the other.

new[SO₄²⁻] =
$$\frac{0.001}{2}$$
 = 0.0005moldm⁻³
new [Ca²⁺] = $\frac{0.001}{2}$ = 0.0005moldm⁻³

Ionic product immediately after mixing

Ionic product =
$$[Ca^{2+}][SO_{4}^{2-}]$$

= 0.0005×0.0005
= $2.5 \times 10^{-7} \text{mol}^2 \text{dm}^{-6}$

Ionic product, 2.5×10^{-7} mol²dm⁻⁶ is less than the solubility product; no precipitation occurs.

2. 20cm³ of 0.01M Barium chloride solution and 20cm³ of 0.005M solution of Sodium Sulphate are mixed at 25°C. Determine whether or not precipitation occurs(Ksp of Barium sulphate is 1x10⁻²⁰ mol²dm⁻6).

Solution

$$\overline{\text{BaCl}_{2(\text{aq})}} \rightleftharpoons \begin{array}{c} \text{Ba}^{2^{+}}_{(\text{aq})} + 2\text{Cl}^{-}_{(\text{aq})} \\ 0.01 & 0.01 \\ \text{Na}_{2}\text{SO}_{4)} \rightleftharpoons 2\text{Na}^{+} + \text{SO}_{4}^{2^{-}} \\ 0.005 & 0.005 \\ \end{array}$$

Mixing 2 equal volumes, the concentration of the ions are halved,

$$[Ba^{2+}] = \frac{0.01}{2} = 5 \times 10^{-3} \text{moldm}^{-3}$$

$$[SO_{4}^{2^{-}}] = \frac{0.005}{2} = 2.5 \times 10^{-3} \text{moldm}^{-3}$$

Ionic product =
$$[Ba^{2+}][SO_{4}^{2-}]$$

=
$$(2.5 \times 10^{-3})$$
 (5×10^{-3}) = 1.25×10^{-5} mol² dm⁻⁶

Ionic product, $1.25 \times 10^{-5} \text{mol}^2 \text{dm}^{-6}$ is greater than the solubility constant value, there precipitation will occur

ACTIVITY

- 1. A solution containing Ag^+ was added to a solution containing 0.005M Chromate ions and 0.005M Cl^- . State which of the salts, AgCl or Ag_2CrO_4 was precipitated first. Give a reason for your answer.
- 2. A solution is 0.01M in cuprous ion, (Cu⁺) and 0.001M in lead (II) ion. Cl⁻ is slowly added, will lead (II) Chloride (Ksp = $1.6 \times 10^{-5} \text{mol}^3/l^2$) or CuCl (Ksp = $3.2 \times 10^{-7} \text{mol}^3/l^2$) precipitate first? Show your working.

Experimental determination of solubility product

Solubility product can be determined directly by;

- Direct titration or Titrimetric method
- ➤ Ion exchange
- > Conductivity measurements

a) Direct titration

i. $Ca(OH)_2$

- A Known volume of water is placed in a bottle and a known mass of Ca(OH)₂ is added to it.
- The bottle is corked, shaken for about 35 minutes, at fixed temperature; allowed to settle for equilibrium to be attained.
- Know volumes of clear solution are then pippeted into a conical flask, titrated with a standard solution of HCl using methyl orange indicator.
- Knowing the number of molecules of HCl, number of moles and concentration of \bar{O} H can be calculated.

$$Ca(OH)_2 + 2HCl_{(aq)} \rightarrow CaCl_{2(s)} + 2H_2O_{(1)}$$

- Concentration of Ca²⁺ can be determined from

$$[[Ca^{2+}] = \frac{1}{2}[\overline{O}H]$$
 from mole ratio

$$\implies$$
 Ksp = $[Ca^{2+}][\bar{o}H^{2}]$

ii. Potassium Iodate in water

- A known volume of distilled water is placed in a bottle and a known mass of Potassium iodate is added.
- The bottle is stoppered, shaken for a period of time, at fixed temperature, allowed to settle to reach equilibrium.
- After equilibrium has been attained, known volumes of the clear saturated solution are pipetted into a conical flask containing potassium iodide with dilute H₂SO₄

$$IO_{3} + 5\Gamma + 6H^{+} \rightarrow 3I_{2 (aq)} + 3H_{2}O$$

Iodine liberated is then titrated with standard thiosulphate solution using starch as an indicator

$$2S_{2}O\frac{2}{3}^{-}_{(aq)} + I_{2\,(g)} \rightarrow S_{4}O\frac{2}{6}^{-}_{(aq)} + 2I^{-}_{(aq)}$$

- Titrate until when the solution turns blue, repeat and note the average volume of the thiosulphate solution used.
- Knowing the concentration of the thiosulphate, mole of Iodine liberated can be determined, from which concentration of iodate ions can be obtained.

$$[IO_{\mathbf{3}}^{-}] = [K^{+}]$$

$$Ksp = [IO_{3}^{-}] [K^{+}]$$