IONIC EQUILIBRIA

ACID-BASE EQUILIBRIA

Arrhenius theory of acid and base

Acid

Is a substance which on dissolving in water produces hydrogen ions.
Base

- Is a substance which on dissolving in water produces Hydroxyl ions
- Is a substance which combines with an acid to form a salt and water

Brønsted - Lowry theorem

Acid
Is a substance which donates a proton (proton donor)
Base
Is a substance which accepts a proton (proton acceptor)
Examples include;
a) $\mathrm{HCl}_{(\mathrm{aq)}+} \mathrm{NH}_{3(\mathrm{aq)}} \rightarrow \mathrm{Cl}^{-}+\mathrm{NH}_{4}^{+}$

Acid; Base; conjugate conjugate
Base of acid of
$\mathrm{HCl} \quad \mathrm{NH}_{3}$
(b) $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\quad \mathrm{Cl}^{-}$

(c.) $\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \rightarrow \quad \overline{\mathrm{O}} \mathrm{H}+\mathrm{NH}_{4}^{+}$

Conjugate conjugate
Base; acid;
NB
i. Strong acids

Are acids which readily donate a proton to another molecule (base) eg $\mathrm{H}_{2} \mathrm{SO}_{4}$, etc ii.
Weak acids
Are acids which do not easily lose its proton with difficult eg

iii.

Strong base ;
A base which has a high affinity for protons eg NaOH

Lewis acid theory

Acid;

Is a substance which donates a pair of electrons in a dative covalent bond
Eg (i) $\underset{\text { acid }}{\mathrm{F}_{3} \mathrm{~B}}+\underset{\text { base }}{\mathrm{NH}_{3} \rightarrow \mathrm{~F}_{3} \mathrm{~B}} \leftarrow: \mathrm{NH}_{3}$
(ii) $\mathrm{Cu}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq})$

IONISATION CONSTANTS OF ACIDS AND BASES

a) Ionisation constants of weak acids (Ka)

Consider a weak monobasic acid(HA) of concentration C which ionizes in solution as follows;
$\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$
$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad{ }^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
$\mathrm{Ka}=\frac{\left[H^{+}(a q)\right]\left[A^{-}(a q)\right]}{[H A(a q)]}$, but $[H A]=\mathrm{C}$
$\mathrm{Ka}=\frac{\left[H^{+}(a q)\right]\left[A^{-}(a q)\right]}{c} \quad$ At equilibrium; $\left[H^{+}\right]=\left[A^{-}\right]$
$\mathrm{Ka}=\frac{\left[H^{+}\right]\left[H^{+}\right]}{c}$
$\mathbf{K a}=\frac{\left[H^{+}\right]^{2}}{c}$
$\mathrm{Eg} . \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
$\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{OO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \quad$ At equilibrium $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$, If $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\mathrm{C} \mathrm{mold} \mathrm{m}^{-3}$
$\mathbf{K a}=\frac{\left[H^{+}\right]^{2}}{c}$

Relationship between Ka and degree of Dissociation, $\boldsymbol{\alpha}$

Consider a weak monobasic acid(HA) of concentration C and degree of dissociation, α

$$
\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

Initial moles;	C	-	-
Moles reacted ;	$\mathrm{C} \alpha$	$\mathrm{C} \alpha$	$\mathrm{C} \alpha$
Equilibrium moles	$\mathrm{C}-\mathrm{C} \alpha$	$\mathrm{C} \alpha$	$\mathrm{C} \alpha$

$$
\mathrm{Ka}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}=\frac{C \alpha C \alpha}{\mathrm{C}-\mathrm{Ca}}=\frac{C^{2} \alpha^{2}}{C(1-\alpha)}=\frac{C \alpha^{2}}{(1-\alpha)},
$$

For weak acids, α is small, $(1-\alpha) \cong 1$
$\mathrm{Ka}=\frac{C \alpha^{2}}{(1)}=\mathrm{C} \alpha^{2}$
$\alpha=\sqrt{\frac{K_{a}}{C}}$

Example

1. The acid dissociation constant of a dibasic acid is $4.39 \times 10^{-5} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at $25^{0} \mathrm{C}$, Calculate the degree of ionization of a 0.01 M solution of the acid. UNEB 2010

Solution
For weak acids, $\mathrm{Ka}=\frac{c \alpha^{2}}{(1-\alpha)}$, But also for weak acids; $\alpha \lll<1$,
$(1-\alpha) \cong 1$
$\mathrm{K}_{\mathrm{a}}=\mathrm{C} \alpha^{2}$
$4.39 \times 10^{-5}=0.01 \alpha^{2}$
$\alpha=\sqrt{\frac{4.39 \times 10^{-5}}{0.01}}$
$\boldsymbol{\alpha}=0.066$
$\alpha=6.6 \%$
Activity

1. Calculate the degree of dissociation of a 0.01 M ethanoic acid if K is $1.0 \times 10^{-5} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at 298 K
b) Ionisation constant for weak bases; $\mathbf{K}_{\underline{b}}$

Consider a weak base BOH of concentration C which ionizes in solution as follows.

$$
\begin{aligned}
& \mathrm{BOH}(\mathrm{aq}) \rightleftharpoons \mathrm{B}^{+}(\mathrm{aq})+\overline{\mathrm{O}} \mathrm{H}(\mathrm{aq}) \\
& \mathrm{Kb}=\frac{\left[B^{+}\right][\overline{\mathrm{O} H}]}{[B O H]} \text { but }[\mathrm{BOH}]=\mathrm{C} \text { moldm }{ }^{-3} \\
& \mathrm{~Kb}=\frac{\left[B^{+}\right][\overline{\mathrm{O} H}]}{[C]} \quad \text { At equilibrium; }\left[B^{+}\right]=[\overline{\mathrm{O} H}] ; \\
& \mathrm{Kb}=\frac{\left[\overline{\mathrm{O} H]^{\mathrm{a}}}\right.}{c}
\end{aligned}
$$

Assumptions

\checkmark At equilibrium; $\left[B^{+}\right]=[\overline{\mathrm{O}} \mathrm{H}]$;
\checkmark Concentration of unionized base is equal to the original concentration; because proportion of molecules ionized is small.

Relationship between $\mathbf{K b}$ and α

Consider a weak base BOH of concentration C and degree of dissociation, α

But for weak bases; $\alpha \lll<1,(1-\alpha) \cong 1$
$\mathrm{K}_{\mathrm{b}}=\mathrm{C} \alpha^{2}$
$\alpha=\sqrt{\frac{K_{b}}{C}}$
Activity

1. Write;
i. An equation for the ionization methylamine in water
ii. The expression for the base dissociation constant, Kb for Methylamine
2. At $25^{\circ} \mathrm{C}$ Ammonia has a base ionization constant, Kb of $1.8 \times 10^{-5} \mathrm{moldm}^{-3}$
a) Write an expression for Kb of Ammonia
b) Calculate the concentration of $\overline{\mathrm{O}} \mathrm{H}$ in 0.1 M Ammonia solution at $25^{\circ} \mathrm{C}$

State any assumptions made (1997 No. 11 Paper 1, part of question)

IONISATION OF WATER

Pure water undergoes self-ionization as follows
$\mathrm{H}_{2} \mathrm{O}(l) \quad \rightleftharpoons \quad \mathrm{H}^{+}(\mathrm{aq})+\overline{\mathrm{O}} \mathrm{H}(\mathrm{aq})$
By law of mass action;
$\mathrm{K}_{\mathrm{eq}}=\frac{\left[H^{+}\right][\text {[ӧ }]}{\left[H_{2} O\right]}$
$\mathrm{K}_{\mathrm{eq}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right][\mathrm{O} \mathrm{H}]$
Since the degree of ionization of water is small; $\left[\mathrm{H}_{2} \mathrm{O}_{(l)}\right]=$ constant
K_{eq}. constant $=\left[\mathrm{H}^{+}\right][\overline{\mathrm{OH}}]$, but $\mathrm{K}_{\text {eq }}$. constant $=\mathrm{K}_{\mathrm{w}}$ (ionization product of water/ionic product of water)
$\mathbf{K}_{\mathrm{w}}=\left[\mathbf{H}^{+}\right][\overline{\mathbf{O}} \mathbf{H}]$
But pure water contains equal concentration of H^{+}and $\overline{\mathrm{O}} \mathrm{H}$ ions $\left(1 \times 10^{-7} \mathrm{moldm}^{-3}\right)$
$\mathrm{K}_{\mathrm{w}}=\left(1 \times 10^{-7} \mathrm{moldm}^{-3}\right)\left(1 \times 10^{-7} \mathrm{moldm}^{-3}\right)$
$\underline{\mathbf{K}}_{\mathrm{w}}=\left(1 \times 10^{-14} \mathrm{moldm}^{-6}\right)$

pH

Is the negative logarithm to the base 10 of the hydrogen ion concentration of a solution.
$\mathrm{pH}=-\log _{10}\left[H^{+}\right]$
OR;
is the logarithm to base 10 of the reciprocal of the hydrogen ion concentration of a solution. i.e. $\mathrm{pH}=$ $\log _{10} \frac{1}{\left[\mathrm{H}^{+}\right]}$
a) pH of water:
pure water contains equal concentration of hydroxyl and hydrogen ions $\left(1 \times 10^{-7} \mathrm{moldm}^{-3}\right) ; \mathrm{pH}$

```
    \(=-\log _{10}\left[H^{+}\right]=-\log _{10}\left[1 \times 10^{-7}\right]\)
    \(\mathrm{pH}=7\)
```

b) pH of acids:
i. strong acids:
pH of strong acids depends only on its concentration because strong acid is fully ionized;

Examples

1. Calculate the pH of a $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

Solution

$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=0.02 \mathrm{M}$
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}{ }_{\text {(aq) }}+\mathrm{SO}_{4}^{2-}{ }^{\text {(aq) }}$
1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ form 2 moles of H^{+}
0.02 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ form (0.02) moles of H^{+}

$$
=0.04 \mathrm{moldm}^{-3}
$$

$$
\Rightarrow\left[\mathrm{H}^{+}\right]=0.04 \mathrm{moldm}^{-3}
$$

$$
\mathrm{pH}=-\log \left[H^{+}\right]
$$

$$
=-\log 0.04
$$

$$
=1.40
$$

2. Calculate the pH value of $2 \times 10^{-3} \mathrm{moldm}^{-3}$ of HNO_{3}

Solution

$\xrightarrow[\mathrm{HNO}_{3(\text { aq })}]{ } \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$
1 mole of $\mathrm{HNO}_{3(\mathrm{aq})}$ produces 1 mole H^{+}
$\left[\mathrm{HNO}_{3}\right]=\left[\mathrm{H}^{+}\right]=2 \times 10^{-3} \mathrm{moldm}^{-3}$

ACTIVITY

1. Calculate the pH of the following concentration of the following acids
(a). $0.05 \mathrm{moldm}^{-3} \mathrm{HCl}$
(b) $0.025 \mathrm{moldm}^{-3}$ Sulphuric acid

NB: A strong acid of concentration > 1.0 moldm ${ }^{-3} ; \mathbf{p H}$ value <0 eg for $2 M$ HCl; $p H=-0.3$;

ii) pH of weak acids

Consider ionization of weak acid HA whose concentration is $\mathrm{C} \mathrm{moldm}^{-3}$, and the degree of ionization $\boldsymbol{\alpha}$
$\mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{\left({ }_{\text {aq }}\right)}+\bar{A}_{(\mathrm{aq})}$
By law of mass action;
$\mathrm{K}_{\mathrm{a}}=\frac{\left[H^{+}\right][A]}{[H A]}$
But at equilibrium; $\left[\mathrm{H}^{+}\right]=[\bar{A}]$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[H^{+}\right]^{2}}{c}$
$\left[H^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}} \mathrm{C}$
$\left[H^{+}\right]=\sqrt{\mathrm{KaC}}$
Also; $\alpha=\sqrt{\frac{\mathrm{Ka}}{c}}$

Examples

1. Calculate the $\left[\mathrm{H}^{+}\right]$and the pH of a 0.01 M solution of ethanoic acid. $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5} \mathrm{moldm}^{-3}\right)$

Solution

Conen of $\mathrm{CH}_{3} \mathrm{COOH}=0.01 \mathrm{moldm}^{-3}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$
From $\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{KaC}}$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\sqrt{1.8 \times 10^{-5} \times 0.01} } \\
\mathrm{pH}= & {\left[\mathrm{H}^{+}\right]=4.24 \times 10^{-4} \mathrm{moldm}^{-3} } \\
= & -\log \left(4.24 \times 10^{+}\right] \\
= & 3.37
\end{aligned}
$$

2. The pH of a 0.001 M solution of ethanoic acid is 3.59 . Calculate the;
i. dissociation constant of the acid.
ii. Degree of dissociation at the concentration given.

Solution

i. $\mathrm{pH}=-\log \left[H^{+}\right]$

$$
3.59=-\log \left[H^{+}\right]
$$

$$
\log \left[H^{+}\right]=-3.59
$$

$$
\left[\mathrm{H}^{+}\right]=\log ^{-1}(-3.59)
$$

$$
=2.57 \times 10^{-4} \mathrm{moldm}^{-3}
$$

From $\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{KaC}}$

$$
\begin{aligned}
& {\left[H^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}} \mathrm{C}} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{\left[H^{+}\right]^{2}}{c}=\frac{(2.57 \times 10)^{2}}{0.001}
\end{aligned}
$$

$$
=\underline{6.61 \times 10^{-5} \mathrm{moldm}^{-3}}
$$

ii. $\alpha=\sqrt{\frac{\mathrm{Ka}}{\mathrm{C}}}=\sqrt{\frac{6.61 \times 10^{-5}}{0.001}}=\underline{\mathbf{0 . 2 6}}$

ACTIVITY

1. A solution of 0.05 M propanoic acid had a pH of 4 . Calculate its degree of dissociation and hence dissociation constant K_{a}
c) $\mathbf{p H}$ of bases
pH of bases can be obtained from the ionization pH of water. ie ;
$\mathrm{K}_{\mathrm{w}}=\left[H^{+}\right][\bar{O} H]$
Taking - \log on both sides of the expression

$$
\begin{aligned}
&- \log \mathrm{K}_{\mathrm{w}=}=-\log \left(\left[H^{+}\right][\bar{O} H]\right) \\
&- \log \mathrm{K}_{\mathrm{w}}=-\log \left[H^{+}\right]+-\log [\bar{O} H] \\
& \mathbf{p K} \mathbf{K}_{\mathrm{w}}=\mathbf{p H}+\mathbf{p O H} \\
& \quad \text { from } \mathrm{K}_{\mathrm{w}}=1 \times 10^{-14} \\
& \mathrm{pK}_{\mathrm{w}}=-\log [\mathrm{Kw}] \\
& \mathrm{pK}_{\mathrm{w}}=-\log \left[1 \times 10^{-14}\right] \\
& \mathbf{p K}_{\underline{w}}=\mathbf{1 4}
\end{aligned}
$$

i. pH of strong bases

Examples

1. Calculate the pH of 0.001 M Potassium hydroxide
$\mathrm{KOH}_{(\mathrm{aq})} \rightarrow \mathrm{K}_{(\mathrm{aq})}^{+}+\overline{\mathrm{O}}_{\mathrm{H}}^{(\mathrm{aq})}$
1 moleof KOH produces 1 mole of $\bar{O} \mathrm{H}$ ions
$[\mathrm{KOH}]=[\overline{\mathrm{O}} \mathrm{H}]=0.001 \mathrm{moldm}^{-3}$
$\mathrm{pOH}=-\log (0.001)$
$\mathrm{pOH}=3$
But from $\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}$

$$
\begin{aligned}
& 14=\mathrm{pH}+3 \\
& \mathrm{pH}=14-3=\mathbf{1 1}
\end{aligned}
$$

OR:

$$
\begin{aligned}
& \mathrm{Kw}=[\overline{\mathrm{O}} \mathrm{H}]\left[\mathrm{H}^{+}\right] \\
& 1 \times 10^{-14}=[\bar{O} \mathrm{H}]\left[\mathrm{H}^{+}\right] \\
& {\left[H^{+}\right]=\frac{1 \times 10^{-14}}{\sigma \mathrm{H}}=\frac{1 \times 10^{-14}}{0.001}=1 \times 10^{-11}} \\
& \mathrm{pH}=-\log \left[H^{+}\right] \\
& =-\log \left(1 \times 10^{-11}\right) \\
& \mathbf{p H}=11
\end{aligned}
$$

ii. $\mathbf{p H}$ of weak bases

Consider a weak base BOH of concentration Cmoldm^{-3} and degree of dissociation, $\boldsymbol{\alpha}$ $\mathrm{BOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{B}_{(\mathrm{aq)}}^{+}+\bar{O} \mathrm{H}_{(\mathrm{aq})}$
By law of mass action,
$\mathrm{Kb}=\frac{\left[B^{+}\right][\overline{\mathrm{O}} \mathrm{H}]}{[\mathrm{BOH}]}=\frac{\left[B^{+}\right][\overline{\mathrm{O}} \mathrm{H}]}{[\mathrm{C}]}$
At equilibrium, $\left[\mathrm{B}^{+}\right]=[\bar{O} \mathrm{H}]$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\frac{[\sigma \mathrm{H}]^{2}}{c} \\
& {[\bar{O} \mathrm{H}]=\sqrt{K_{b} C}} \\
& \alpha=\sqrt{\frac{K_{b}}{c}}
\end{aligned}
$$

Example

1. Calculate the pH of 0.1 M aqueous ammonia whose K_{b} is 1.5×10^{-6}.

Solution
$\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}{ }^{(\mathrm{aq})}+\overline{\mathrm{O}} \mathrm{H}_{(\mathrm{aq})}$
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right][\overline{\mathrm{O}} \mathrm{H}]}{\left[N H_{\mathrm{B}}(\mathrm{aq})\right]}$, At equilibrium $[\overline{\mathrm{O}} \mathrm{H}]=\left[\mathrm{NH}_{4}^{+(\mathrm{aq})}\right]$
$\mathrm{K}_{\mathrm{b}}=\frac{[\sigma \mathrm{H}]^{\mathrm{a}}}{\left[\mathrm{NH}_{\mathrm{a}(\mathrm{aq)}}\right]}$
$1.5 \times 10^{-6}=\frac{[\sigma \mathrm{H}]^{2}}{0.1}$
$[\overline{\mathrm{O}} \mathrm{H}]^{2}=1.5 \times 10^{-6}$
$[\bar{O} \mathrm{H}]=\sqrt{1.5 \times 10^{-6}}=3.87 \times 10^{-4} \mathrm{moldm}^{-3}$
$\mathrm{pOH}=-\log \left(3.87 \times 10^{-4}\right)$

$$
=3.41
$$

From $\mathrm{pH}=\mathrm{pKw}-\mathrm{pOH}$

$$
=14-3.41=\underline{\mathbf{1 0} .587}
$$

ACTIVITY

1. 0.01 M solution of phenylamine is 7.5% ionized
(a) Write the expression for dissociation of phenylamine
(b) Calculate;
(i) K_{b}
(ii) pH of the solution

BUFFER SOLUTION

Buffer solutions are solutions which resist changes in their pH when small amounts of acid or base is added to them.
Types of buffer solutions

(i) acidic buffer

- consists of solution of a weak acid and its salt from a strong base. eg acetic acid and sodium acetate, supplying a conjugate base of weak acid.
- Maintain nearly a constant pH value less than 7
(ii) Basic buffer
- Consists of a solution of a weak base and its salt from a strong acid. Eg ammonium hydroxide and ammonium chloride, supplying a conjugate acid of weak base.
- Maintain nearly a constant pH value above 7
a) Action of acidic buffer:

Consider a solution of weak acid(acetic acid) and its highly ionisable salt (sodium acetate)

* Acetic acid is a weak acid, is not fully ionized while sodium acetate is a strong electrolyte, fully ionized.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{CH} 3 \mathrm{CO} \bar{O}_{(\mathrm{g})}+H^{+}{ }_{(\mathrm{aq})} \\
& \mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq})} \rightarrow \quad \mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{g})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}
\end{aligned}
$$

* Solution contains excess of acetate ions and a large amount of unionized acetic acid, and a small amount of hydrogen ions.
- Addition of H^{+}to this solution (inform of acid eg HCl) will combine with the acetate ions forming unionized acetic acid.
$\mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightleftharpoons \underset{\mathrm{A}}{ } \mathrm{H}_{3} \mathrm{COOH}_{(\mathrm{aq})}$
* H^{+}are removed by excess ethanoate ions already present, solution retains its constant pH value.
* addition of $\bar{O} \mathrm{H}$ ions to this solution from a base, it will be removed by reacting with the unionized acetic acid.

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\overline{\mathrm{O}} \mathrm{H}_{(\mathrm{aq})} \rightleftharpoons \mathrm{CH} 3 \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(l)
$$

* the solution also maintains its pH value.

pH calculations of acidic buffers

- Consider a buffer solution consisting of acetic acid and sodium acetate

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H} 3 \mathrm{CO} \bar{O}_{(\mathrm{g})}+H^{+}{ }_{(\mathrm{aq})} \\
& \mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{g})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}\right]\left[H^{+}\right]}{\left[\mathrm{cH} \mathrm{H}_{\mathrm{a}} \mathrm{COOH}\right]} \\
& {\left[\mathrm{H}^{+}\right]=\frac{K_{\mathrm{a}}[\mathrm{CH}}{[\mathrm{COOH}]}} \\
& {\left[\mathrm{CH}_{\mathrm{s}} \mathrm{COO}\right]}
\end{aligned}
$$

Assumptions:

- $\mathrm{CH}_{3} \mathrm{COONa}$ is a strong electrolyte; fully ionizes; $\left[\mathrm{CH}_{3} \mathrm{CO} \bar{O}\right]=[$ salt $]$
- $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid, $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=[$ acid $]$

Therefore $\left[H^{+}\right]=\frac{K_{a}[\text { acid }]}{[\text { salt }]}$
Taking $-\log$ on both sides of the expression;

$$
\begin{aligned}
& -\log \left[H^{+}\right]=-\log \frac{K_{\mathrm{a}}[\text { acid }]}{[\text { salt }]} \\
& \\
& -\log \left[H^{+}\right]=-\log \mathrm{K}_{\mathrm{a}}+-\log \frac{[\text { acid }]}{[\text { salt }]} \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{[\text { acid }]}{[\text { salt }]} \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { [salt }]}{[\text { acid }]}
\end{aligned} \text { "The Henderson - Hassel balch equation" }
$$

1. (a) Calculate the pH of a buffer solution which consists of 4.1 g of Sodium ethanoate per litre of solution and 0.01 M ethanoic acid whose $\mathrm{K}_{\mathrm{a}}=1.7 \times 10^{-5} \mathrm{moldm}^{-3}$

solution

Relative molecular mass of $\mathrm{CH}_{3} \mathrm{COONa}=(2 \times 14)+\left(2 \times \mathrm{O}_{16}\right)+(3 \times 1)+23=82$
1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ weighs 82 g
X moles of $\mathrm{CH}_{3} \mathrm{COONa}$ weighs 4.1 g
$\mathrm{X}=\left(\frac{4.1}{82}\right)=0.05 \mathrm{moldm}^{-3}$
[acid] $=0.01$
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}$
$\mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}$
From the Henderson - Hassel balch equation;
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]}$
$\mathrm{pH}=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]}$
$\mathrm{pH}=-\log \left(1.7 \times 10^{-5}\right)+\log \frac{[0.05]}{[0.01]}$
$\mathrm{pH}=5.47$
(b). Calculate the pH change of the solution above if;
(i) $1 \mathrm{~cm}^{3}$ of 1 M NaOH is added
(ii) $1 \mathrm{~cm}^{3}$ of 1 M HCl is added

Solution

$1000 \mathrm{~cm}^{3}$ of NaOH contain 1 mole
$1 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{1}{1000}\right)$ moles of NaOH

$$
=0.001 \text { moles of } \mathrm{NaOH}
$$

$[\mathrm{NaOH}]=[\overline{\mathrm{O}} \mathrm{H}]=0.001$ moles
$\bar{O} H$ ions reacts with unionized acetic acid, decreases the concentration of acid, increasing the concentration of salt $\left(\mathrm{CH}_{3} \mathrm{CO} \overline{\mathrm{O}}\right)$
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})+} \overline{\mathrm{O}} \mathrm{H}_{\text {(aq) }} \rightleftharpoons \mathrm{H}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}$
New [salt] $=0.05+0.001=0.051 \mathrm{moll}^{-1}$
New [acid] $=0.01-0.001=0.009 \mathrm{~mol}^{-1}$
From $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[a c i d]}$
$\mathrm{pH}=-\log \left(1.7 \times 10^{-5}\right)+\log \frac{[0.051]}{[0.009]}$
$\mathrm{pH}=4.7696+0.753=\underline{\mathbf{5 . 5 2 3}}$
change in $\mathrm{pH}=5.523-5.47$
change in $\mathbf{~} \mathbf{H H}=\mathbf{0 . 0 5 3}$ units
(b) $1000 \mathrm{~cm}^{3}$ of HCl contain 1 mole
$1 \mathrm{~cm}^{3}$ of HCl contains $\left(\frac{1}{1000}\right)$ moles
$[\mathrm{HCl}]=\left[\mathrm{H}^{+}\right]=0.001 \mathrm{moldm}^{-3}$
H^{+}ions reacts with acetate ions, decreasing the concentration of salt, increasing the concentration of salt caid.
$\mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{H}_{(\mathrm{aq})}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}$
New [salt] $=0.05-0.001=0.049 \mathrm{moldm}^{-3}$
New $[$ acid $]=0.01+0.001=0.011 \mathrm{moldm}^{-3}$
From $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]}$
$\mathrm{pH}=-\log \left(1.7 \times 10^{-5}\right)+\log \frac{[0.049]}{[0.011]}$
$\mathrm{pH}=5.418$
change in $\mathrm{pH}=5.418-5.47=-\mathbf{0 . 0 5 2}$ units
2. Calculate the mass of Sodium ethanoate that should be added to 0.1 M ethanoic acid at $25^{\circ} \mathrm{C}$ to give a solution of pH 5.5 .

State any assumptions made (Ka of ethanoic acid $=1.8 \times 10^{-5} \mathrm{moldm}^{-3}$)

Solution

$\overline{\text { From } \mathrm{pH}}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]}$
$5.5=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]}$
$5.5=-\log \left(1.8 \times 10^{-5}\right)+\log \frac{[\text { salt }]}{[0.1]}$
$\log [$ salt $]=-0.245$
[salt] $=0.569 \mathrm{~mol} \mathrm{I}^{-1}$
RMM of $\mathrm{CH}_{3} \mathrm{COONa}=82$.
1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ weighs 82 g
0.569 moles of $\mathrm{CH}_{3} \mathrm{COONa}$ weigh $(82 \times 0.569)=\mathbf{4 6 . 6 2 g}$

Mass of $\mathrm{CH}_{3} \mathrm{COONa}=46.62 \mathrm{~g}$
Activity UNEB 2001(paper 1 no.15, 1999(p1 No. 12), 2007 p1. 13a)

(b) Action of basic buffers

Consider a solution of weak base(ammonium hydroxide) and its highly ionisable salt(Ammonium chloride)
$-\mathrm{NH}_{4} \mathrm{OH}$ partially ionizes while $\mathrm{NH}_{4} \mathrm{Cl}$ fully ionizes both producing NH_{4}^{+}

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NH}_{4}^{+(\mathrm{aq})} \\
& \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}^{+(\mathrm{aq})} \\
& \mathrm{H}_{(\mathrm{aq})} \\
& \mathrm{Cl}_{(\mathrm{aq})}^{-}
\end{aligned}
$$

-Solution contains excess of NH_{4}^{+}, a large amount of unionized ammonium hydroxide, and a small amount of hydroxyl ions.
-Addition of a small amount of strong acid, HCl ,hydrogen ions added are removed by ammonium hydroxide;

$$
\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}+\mathrm{H}_{(\mathrm{aq})}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}
$$

-Solution suffers no change in pH
-Addition of a small amount of a base, $\bar{O} \mathrm{H}$ added are removed by reacting with NH_{4}^{+}forming unionized ammonium hydroxide/ ammonia and water, thus
-pH remains constant;

$$
\mathrm{NH}_{4}^{+}+\overline{\mathrm{aq})}+\mathrm{O}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})} \quad\left(\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right)
$$

pH calculation of Basic buffers:

* Consider a buffer solution consisting of ammonium hydroxide and ammonium chloride.

By law of mass action; $\quad \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right][\mathrm{OH}]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}$

$$
\mathrm{K}_{\mathrm{b}}\left[\mathrm{NH}_{4} \mathrm{OH}\right]=\left[\mathrm{NH}_{4}^{+}\right][\overline{\mathrm{O}} \mathrm{H}]
$$

$$
[\overline{\mathrm{O}} \mathrm{H}]=\frac{\mathrm{Kb}\left[\mathrm{NH}_{4} \mathrm{OH}\right]}{\mathrm{NH}_{4}^{+}}
$$

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }^{(\mathrm{aq})}+\bar{O} \mathrm{H}_{(\mathrm{aq})} \\
& \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}^{+}{ }^{(\mathrm{aq)}}+\mathrm{Cl}_{(\mathrm{aq)}}^{-}
\end{aligned}
$$

Assumptions

i. Concentration unionized $\mathrm{NH}_{4} \mathrm{OH}$ is equal to the concentration of base.
ii. $\quad \mathrm{NH}_{4} \mathrm{Cl}$ fully ionizes, $\left[\mathrm{NH}_{4}^{+}\right]=$[salt $]$

Therefore $[\bar{O} H]=\mathrm{K}_{\mathrm{b}}^{[\text {basse }]}[$ salt $]$

$$
-\log [\bar{O} H]=-\log K_{b}+-\log \frac{[\text { sait }]}{[\text { acid }]}
$$

$$
p O H=\mathrm{pK}_{\mathrm{b}}-\log \frac{[\text { salt }]}{[a c i d]}
$$

$$
p O H=\mathrm{pK}_{\mathrm{b}}+\left(\log \frac{[\text { salt }]}{[\text { acid }]}\right)^{-1}
$$

$\mathrm{pOH}=\mathrm{pKb}+\log \frac{[\text { salt }]}{[\text { base }]}$ But $\mathrm{pKw}=\mathrm{pH}+\mathrm{pOH}$

$$
\mathrm{pH}=\mathrm{pKw}-\mathrm{pKb}+\log \frac{\left[\frac{[\text { salt }]}{[\text { base }]}\right.}{}
$$

Examples

1. A solution consists of 0.01 M ammonia solution and 2.13 g of ammonium chloride in a litre of solution (Kb for $\mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5} \mathrm{moldm}^{-3}$)
a) Calculate the pH of the solution
b) pH change of solution on addition of $1 \mathrm{~cm}^{3}$ of 1 M HCl

Solution

Relative molecular mass of $\mathrm{NH}_{4} \mathrm{Cl}=53.5$
1 mole of $\mathrm{NH}_{4} \mathrm{Cl}$ weighs 53.5 g
X mole of $\mathrm{NH}_{4} \mathrm{Cl}$ will weigh 2.13 g
$\mathrm{X}=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=\frac{2.13}{53.5}=0.0398 \mathrm{~mol} \mathrm{l}^{-1}$
From $\mathrm{pOH}=\mathrm{pKb}+\log \frac{[\text { ssalt }]}{[\text { base }]}=-\log \left(1.8 \times 10^{-5}\right)+\log \frac{0.0398}{0.01}=5.345$

$$
\mathrm{pKw}=\mathrm{pH}+\mathrm{pOH}, \mathrm{pH}=\mathrm{pKw}-\mathrm{pOH}=14-5.345=\mathbf{8 . 6 5 5}
$$

b) moles of HCl
$1000 \mathrm{~cm}^{3}$ of solution contains 1 mole of HCl
$1 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{1}{1000}\right)$ moles
$\mathrm{HCl}_{(\mathrm{aq)}} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}$
1 mole of acid produces 1 mole of $\mathrm{H}^{+}{ }_{\text {(aq) }}$
Concentration of $\mathrm{H}^{+}=0.001$ moles
$\mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}^{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(l)$
New [salt] $=0.0398+0.001=0.0408 \mathrm{~mol} l^{-l}$

New [Base] $=0.01-0.001=0.009 \mathrm{~mol} l^{-l}$
$\mathrm{pOH}=-\log \left(1.8 \times 10^{-5}\right)+\log \frac{0.0408}{0.009}$
$\mathrm{pOH}=5.401$
$\mathrm{pH}=14-5.401=\mathbf{8 . 5 9 8 8 5}$
pH change $=8.655-8.59855$
$\mathbf{p H}$ change $=0.056$ units
2. calculate the pH of the solution which was made by adding $30 \mathrm{~cm}^{3}$ of 0.1 M HCl to $80 \mathrm{~cm}^{3}$ of 0.1 M
ammonia solution $\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5} \mathrm{~mol} l^{-1}\right)$

Solution

Moles of acid
$1000 \mathrm{~cm}^{3}$ of solution contains 0.1 moles of acid
$30 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.1}{1000} \times 30\right)$

$$
=0.003 \mathrm{moles}
$$

Moles of $\mathrm{NH}_{4} \underline{\mathrm{OH}}$

$1000 \mathrm{~cm}^{3}$ of solution contains 0.1 moles of base
$80 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.1}{1000} \times 80\right)$

$$
=0.008 \mathrm{moles}
$$

$\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}$
Moles of acid that reacted $=0.003=$ [salt]
Moles of base that reacted $=0.003$
Moles of excess base $=0.008-0.003$

$$
=0.005 \mathrm{moles}
$$

Excess $\mathrm{NH}_{4} \mathrm{OH}$ and salt formed ($\mathrm{NH}_{4} \mathrm{Cl}$) forms a basic buffer:

$$
\begin{aligned}
& \mathrm{pOH}=\mathrm{pKb}+\log \frac{[\text { salt }]}{[\text { base }]} \\
& \mathrm{pOH}=-\log \left(1.8 \times 10^{-5}\right)+\log \left(\frac{0.003}{0.005}\right) \\
& \mathrm{pOH}=\mathbf{4 . 5 2 3} \\
& \mathrm{pKw}=\mathrm{pH}+\mathrm{pOH} \\
& \mathrm{pH}=14-4.523 \\
& \mathbf{p H}=\mathbf{9 . 4 7 7}
\end{aligned}
$$

Activity

1. 0.01 M ammonia solution was 4.5% ionized when dissolved in water
a) Write the expression for the ionization of ammonia in water
b) Calculate the base dissociation constant, K_{b}
c) Calculate the concentration of ammonium chloride in grams per litre that must be added to the solution in (a) to give a pH of 8.83 .
2. UNEB 2012 (2) NO. 3C

APPLICATIONS OF BUFFER SOLUTIONS:

\checkmark Controlling the pH of the reactions in industrial processes eg in fermentation process.
\checkmark electroplating metals
\checkmark Maintaining the pH of blood plasma constant i.e. 7.4 eg carbonic acid and its conjugate base , HCO_{3}^{-}
\checkmark Used in preparations of standard solutions of definite pH
\checkmark Used in preservationof food.

\checkmark Control pH of shampoos.

SALT HYDROLYSIS

Is a process whereby a salt dissolved in water produces cations and anions which interact with water producing more H^{+}and $\overline{\mathrm{O}} \mathrm{H}$ ions so that pH of the resultant solution is either greater than or less than 7 .
(a) Hydrolysis of salt of strong base and weak acid.

These salts include;

- Sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$, Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, Sodium cyanide (NaCN)

When Sodium acetate is dissolved in water;
\checkmark Salt being a strong electrolyte; is highly dissociated and water is slightly dissociated.
$\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\overline{O H}_{(\mathrm{aq})}$
Unionized
water
$\mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}$
\checkmark Acetate ions react with hydrogen ions from water resulting in the excess of hydroxyl ions $\mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\overline{\mathrm{O}} \mathrm{H}_{(\mathrm{aq})}$
\checkmark More water molecules ionize to restore water equilibrium producing more hydroxyl ions in excess; solution will have pH greater than 7;
a) Hydrolysis constant K_{h} for a salt of a weak acid

Consider salt BA formed from combination of a weak acid HA and a strong base, BOH
$\bar{A}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{HA}_{(\mathrm{aq})}+\overline{\mathrm{O}} \mathrm{H}_{(\mathrm{aq})}$
By law of mass action; $\quad \mathrm{K}_{\mathrm{h}}=\frac{[\mathrm{HA}][\mathrm{OH}]}{[\text { A] }}-\cdots----$ (i) (Assumption $\mathrm{H}_{2} \mathrm{O}$ is large in excess)
At equilibrium $\left[\mathrm{HA}^{+}\right]=[\bar{O} \mathrm{H}]$

$$
\mathrm{Kh}=\frac{[O H]^{2}}{\left[A^{-}\right]}
$$

Since $\left[A^{-}\right]=[$salt $]$
$\mathrm{Kh}=\frac{[\mathrm{OH}]^{2}}{[\text { salt }]}$

Relationship between $\mathbf{K h}, \mathbf{K a}, \mathbf{K w}$

Multiplying the denominator and numerator of the expression (i) by the concentration of hydrogen ions;
$\mathrm{K}_{\mathrm{h}}=\frac{[\mathrm{HA}][\mathrm{OH}]}{[A]} \times \frac{\left[H^{+}\right]}{\left[H^{+}\right]}$
$\mathrm{K}_{\mathrm{h}}=\frac{[H A]}{[A]\left[H^{+}\right]} \cdot[\overline{\mathrm{O}} \mathrm{H}]\left[\mathrm{H}^{+}\right]$
But $[\bar{O} H]\left[\mathrm{H}^{+}\right]=\mathrm{Kw} \quad$ and $\quad \mathrm{Ka}=\frac{[H A]}{[\bar{A}]\left[H^{+}\right]}$
$\mathrm{K}_{\mathrm{h}}=\frac{1}{K_{a}} \mathrm{~K}_{\mathrm{w}}$
$\mathrm{K}_{\mathrm{h}}=\frac{K_{w}}{K_{a}}$

Degree of hydrolysis of a salt of weak acid and strong base:

-Is the fraction of the total salt that undergoes hydrolysis when equilibrium has been established;
Consider a salt of initial concentration, C moldm ${ }^{-3}$, degree of hydrolysis, h

By law of mass action: $\mathrm{K}_{\mathrm{h}}=\frac{[H A][\sigma H]}{[A]}$
At equilibrium $[\bar{O} \mathrm{H}]=[\mathrm{HA}]$
$\mathrm{K}_{\mathrm{h}}=\frac{[\sigma H]^{2}}{[A]}=\frac{c h . c h}{c-C h}=\frac{c^{2} C^{2}}{c(1-h)}$
$\mathrm{K}_{\mathrm{h}}=\frac{c h^{2}}{(1-h)}$; For dilute solution, h is very small, $1-\mathrm{h} \cong 1$
$\mathbf{h}=\sqrt{\frac{K_{h}}{c}} \underline{\text { Examples }}$

1. Calculate the degree of hydrolysis of 0.1 M solution of potassium cyanide. (dissociation constant of hydrogen cyanide at $25^{0} \mathrm{C}$ is $7.2 \times 10^{-10} \mathrm{moldm}^{-3}$)

Solution
From $\mathrm{K}_{\mathrm{h}}=\frac{K_{\mathrm{w}}}{K_{a}}=\frac{1 \times 10^{-14}}{7.2 \times 10^{-10}}$
$=1.388889 \times 10^{-5} \mathrm{moldm}^{-3}$
But $\mathrm{h}=\sqrt{\frac{K_{\text {仿 }}}{c}}$
$h=\sqrt{\frac{1.388889 \times 10^{-5}}{0.1}}$
$\underline{\mathrm{h}}=\mathbf{0 . 0 1 2}=\mathbf{1 . 2 \%}$
2. Calculate the pH of solution of sodium ethanoate made by dissolving $8.4 \mathrm{gdm}^{-3}$ in water $\left(\mathrm{K}_{\mathrm{h}}=5.5 \times\right.$ $10^{-10)} \mathrm{moldm}^{-3}$)

Solution

$\mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{Na}^{+}{ }_{\text {(aq) }}$
$\mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\bar{O} \mathrm{H}_{(\mathrm{aq})}$
$\mathrm{K}_{\mathrm{h}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right][\mathrm{OH}]}{\left[\mathrm{CH}_{\mathrm{s}} \mathrm{COO}\right]}$
But at equilibrium $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=[\overline{\mathrm{O}} \mathrm{H}]$
$\mathrm{Kh}=\frac{\left[\mathrm{OH}^{2}\right]^{2}}{\left[\mathrm{CH}_{\mathrm{B}} \mathrm{CO} \bar{O}\right]}-\cdots--------------(\mathrm{i})$
RFM of $\mathrm{CH}_{3} \mathrm{COONa}=82$
1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ weighs 82 g
X mole of $\mathrm{CH}_{3} \mathrm{COONa}$ weighs 8.4 g
$X=\frac{8.4}{82}=0.1024 \mathrm{moldm}^{-3}$
From (i) $[\bar{O} H]^{2}=0.1024 \times 5.5 \times 10^{-10}$
$[\bar{O} H]=7.5 \times 10^{-6} \mathrm{moldm}^{-3}$
$\mathrm{pOH}=-\log [\overline{\mathrm{O}} H]$
$=-\log \left(7.5 \times 10^{-6}\right)$
pOH= $\mathbf{5 . 1 2 5}$
$\mathrm{pH}=\mathrm{pKw}-\mathrm{pOH}$
$\mathrm{pH}=14-5.125$
$\mathrm{pH}=8.875$
ACTIVITY

1. When a certain mass of sodium propanoate was dissolved in 1 litre of water, $10 \mathrm{~cm}^{3}$ of this solution required $7.0 \mathrm{~cm}^{3}$ of $6.0 \times 10^{-3} \mathrm{M}$ for complete neutralization. Calculate the mass of sodium propanoate dissolved in 1 litre of water ($\mathrm{K} \mathrm{h}=6.0 \times 10^{-10}$)
2. The pH of a solution formed by dissolving 7.2 g of sodium benzoate in 1 litre of water is 8.6 . Calculate the hydrolysis constant of sodium benzoate
b) Hydrolysis of a salt from strong acid and weak base eg $\mathrm{NH}_{4} \mathrm{Cl}$;

When $\mathrm{NH}_{4} \mathrm{Cl}$ is dissolved in water;
-Salt being a strong electrolyte; is highly dissociated; and water partially ionizes.

$$
\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}+{ }_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

$$
\mathrm{H}_{2} \mathrm{O}_{(l)}+\rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\overline{\mathrm{O}} \mathrm{H}_{(\mathrm{aq})}
$$

$-\mathrm{NH}_{4}^{+}$reacts with $\bar{O} H$ ions from ionized water forming unionized $\mathrm{NH}_{4} \mathrm{OH}$
-concentration of hydroxyl ions is decreased.
-More water molecules ionize producing more hydrogen ions; molar concentration of hydrogen ions exceed the hydroxyl ions, pH becomes less than 7 .

Hydrolysis constant of a salt from a weak base and strong acid

$\mathrm{NH}_{4} \mathrm{Cl}_{(s)}+{ }_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}^{+}{ }^{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-}$
$\mathrm{NH}_{4}^{+(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}+H^{+}{ }_{(\mathrm{aq})}$
$\mathrm{OR} \mathrm{NH}_{4}^{+(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}$
$\mathrm{K}_{\mathrm{h}}=\frac{[\mathrm{NH} 4 \mathrm{OH}]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}$
At equilibrium $[\mathrm{NH} 4 \mathrm{OH}]=\left[\mathrm{H}^{+}\right]$
$\mathrm{K}_{\mathrm{h}}=\frac{\left[\mathrm{H}^{+}\right]^{\mathrm{z}}}{\left[\mathrm{NH}_{4}^{+}\right]}$
$\mathrm{K}_{\mathrm{h}}=\frac{\left[H^{+}\right]^{2}}{[\text { salt }]}$
$\left[H^{+}\right]=\sqrt{K_{n}[\text { salt }]}$
Degree of hydrolysis:
$\mathbf{h}=\sqrt{\frac{K_{h}}{c}}$
$\mathbf{K}_{\mathrm{w}}=\frac{K_{h}}{K_{\bar{b}}}$
Activity.

1. Given that the dissociation constant of ammonium chloride at $25^{\circ} \mathrm{C}$ is 1.8×10^{-5}. Calculate the hydrolysis constant and the degree of hydrolysis of ammonium chloride in 0.001 M solution. What will be the hydrogen ion concentration of the solution?
2 (a). The pH of ammonium nitrate solution is 5.45. Explain this observation.
b) Calculate the hydrolysis constant of ammonium nitrate.
2. Methyl ammonium chloride undergoes hydrolysis according to the equation.
$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{CH}_{2} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$
a) Write the expression for its hydrolysis constant.
b) When 6.7 g of methyl ammonium chloride was dissolved in $500 \mathrm{~cm}^{3}$ of water, the pH was
2.33. Calculate the hydrolysis constant of the salt.
c) Calculate the volume of the above solution that would react completely with $10 \mathrm{~cm}^{3}$ of 0.25 M

Sodium hydroxide solution..
4. Calculate the pH of 0.001 M solution of phenyl ammonium chloride whose $\mathrm{K}_{\mathrm{h}}=1.8 \times 10^{-3} \mathrm{moldm}^{-3}$.

ACID - BASE INDICATORS/ HYDROGEN ION INDICATORS

- Are substances that change colour according to the hydrogen concentration of the solution, in which they are added.
- Are weak acids or weak bases , therefore ;
- are slightly dissociated when dissolved in water.
- Its colour depends on the colour of the undissociated molecule and anion produced(negatively charged.)

INDICATOR FUNCTIONING

(a). Phenolphthalein (HPh)
$\mathrm{HPh}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{Ph}_{\text {(aq) }}^{-}$
Colourless
pink
Undissociated molecule anion produced;
In acidic solution with high concentration of H^{+},
\checkmark Hydrogen ions remove Ph^{-}, equilibrium shifts from right to left.
\checkmark Solution contains an excess of HPh molecules; showing colourless
In alkaline solution, with high concentration of $\bar{O} H$,
\checkmark Addition of $\bar{O} H$ removes the hydroxonium ions, producing water, decreasing the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$.
\checkmark Decrease in $\mathrm{H}_{3} \mathrm{O}^{+}$concentration disturbs the equilibrium; more of the HPh ionizes producing Ph^{-} molecules; solution appears pink.

(b). Methylorange

$\mathrm{HA}_{\text {(aq) }} \rightleftharpoons \mathrm{H}_{(\text {aq) }}^{+}+\mathrm{A}_{(\text {aq) }}^{-}$
Red yellow
In acidic solution, with high concentration of Hydrogen ions,
\checkmark Hydrogen ions remove A^{-}ions, equilibrium shifts right to left.
\checkmark Solution contains an excess of HA molecules showing red colour;
In alkaline solution, with high concentration of hydroxyl ions;
\checkmark Addition of hydroxyl ions remove the hydrogen ions, producing water; decreasing concentration of hydrogen ions.
\checkmark More HA ionize producing A ions; colour of methyl orange appears yellow
QUESTION
a) Explain what is meant by the term acid - base indicator.
b) Explain how phenolphthalein acts as an indicator.

INDICATOR CONSTANT ($K_{\underline{x}}$)

Consider unionized form of indicator, HIn which is a weak acid
$\mathrm{HIn}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{In}^{-}{ }_{(\mathrm{aq})}$
Colour $\mathbf{x} \quad$ Colour \mathbf{y}
By law of mass action;
$\mathrm{K}_{\mathrm{In}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$

WORKING RANGES OF INDICATORS

\checkmark Is the range of hydrogen ion concentration/ pH ; over which different indicators change colour.
From $\mathrm{K}_{\mathrm{In}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}, \quad\left[\mathrm{H}^{+}\right]=\frac{K I n\left[\mathrm{HIn} n^{-}\right]}{[I n]}$
Taking negative logarithm on both sides
$\log \left[H^{+}\right]=-\log K_{I n} \frac{H I n}{\left[I n^{-}\right]}$
$\log \left[H^{+}\right]=-\log K_{I n}+-\log \frac{H I n}{I n^{-}}$
$\mathrm{pH}=\mathrm{p}^{\mathrm{KIn}}-\log \frac{H I n}{I n^{-}}$
$\mathrm{pH}=\mathrm{p}^{\mathrm{KIn}}+\log \frac{I n}{H I n}$ Henderson - Hasselbalch equation for Indicators
For colour Y; $\quad\left[\mathrm{In}^{-}\right]=10[\mathrm{HIn}]$
$\Rightarrow \mathrm{pH}=\mathrm{p}^{\mathrm{KIn}}+\log \frac{I n^{-}}{H I n}$,
$\mathrm{pH}=\mathrm{p}^{\mathrm{KIn}}+1$
For colour X; [HIn]=10[$\left.\mathrm{In}^{-}\right]$
$\Rightarrow \mathrm{pH}=\mathrm{p}^{\mathrm{KIn}}+\log \frac{I n^{-}}{H I n}$
$\mathrm{pH}=\mathrm{p}^{\mathrm{w}}-$
$\mathrm{pH}=\mathrm{p}^{\mathrm{KIn}} \pm 1$
Therefore range of pH over which indicator changes colour is $\mathbf{p H}=\mathbf{p}^{\mathbf{K I n}} \pm \mathbf{1}$, e.g for phenolphthalein, $\mathrm{P}^{\mathrm{Kin}}(9.4)$, for pink (colour y), $9.4+1=10.4$; for colourless (colour x) $9.4-1=8.4$, range of 8.3-10.4.
Table showing some indicators, their colours and pH ranges

Indicator	$\mathbf{P}^{\text {KIn }}$	pH range	Acid	Colour
			red	yellow
Thymol blue	1.51	$1.2-2.8$	red	yellow
Methyl orange	3.70	$3.0-4.5$	red	yellow
Methyl red	5.10	$4.2-6.3$	colourless	pink
Phenolphthalein	9.4	$8.3-10.0$	yellow	blue
Bromo thymol blue	7.0	$6.0-7.3$		

NB:

- Universal indicator is a mixture of indicators which give a gradual change in colour over a wide range of pH .
pH CHANGES DURING ACID - BASE TITRATIONS
* Depends on the nature of acid and base used eg;

Strong base against strong acid (HCl Vs NaOH)

-. At A, pH is low, HCl is a strong acid which completely ionizes producing many hydrogen ions.
AB;

- Slow pH rise, hydrogen ion from acid is removed from hydroxyl ion added.

BC;

- Asharp rise in $\mathrm{pH},(4-10)$, is due to a small amount of Sodium hydroxide added at the end point; when equivalent amounts of acid and base are added
- pH at end point 7; neutral salt formed is not hydrolysed.
- Methyl red, phenolphthalein, Bromothymol blue are the most suitable indicators used. CD
- Rise in pH is due to excess NaOH added after the end point

Example

1. $20.0 \mathrm{~cm}^{3}$ of a 0.02 M sodium hydroxide was added to $30 \mathrm{~cm}^{3}$ of 0.025 M sulphuric acid.

Calculate the;
a) Molar concentration of the hydrogen ions in the initial sulphuric acid.
b) Molar concentration of the hydrogen ions in the resultant solution
c) pH of the resultant solution (Uneb 1999 (No 5)

Solution

a) $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow 2 \mathrm{H}^{+}{ }_{\text {(aq) }}+\mathrm{SO}_{4}^{2-}{ }^{\text {(aq) }}$

1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ produces 2 moles of H^{+}
0.025 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ produces (2×0.025)

$$
=0.05 \mathrm{M}
$$

b) Moles of Sulphric acid
$1000 \mathrm{~cm}^{3}$ of solution contains 0.025 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$30 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.025 \times 30}{1000}\right)$ moles

$$
=7.5 \times 10^{-4} \mathrm{moles}
$$

Moles of sodium hydroxide
$1000 \mathrm{~cm}^{3}$ of solution contains 0.02 moles of NaOH .
$20.0 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.02 \times 20}{1000}\right)$ moles

$$
=4 \times 10^{-4} \text { moles }
$$

$2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq)}} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{\text {(l) }}$
2 moles of NaOH reacts 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that reacted $=\frac{1}{2} \times 4.0 \times 10^{-4}$ moles $=2 \times 10^{-4} \mathrm{moles}$
Moles of unreacted/ excess $\mathrm{H}_{2} \mathrm{SO}_{4}=7.5 \times 10^{-4}-2 \times 10^{-4}=5.5 \times 10^{-4}$ moles
Total volume of solution $=(20+30) \mathrm{cm}^{3}$

$$
=50.0 \mathrm{~cm}^{3}
$$

$50 \mathrm{~cm}^{3}$ of solution that contains 5.5×10^{-4} moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$1000 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{5.5 \times 10^{-4} \times 1000}{50}\right)$ moles
Molar concentration $=0.011 \mathrm{M}$
Molar concentration of $\mathrm{H}^{+}=(2 \times 0.011) \mathrm{M}$

$$
=0.022 \mathrm{M}
$$

c) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log (0.022)$
$\mathrm{pH}=1.66$
2. Calculate the pH obtained by addition of $20 \mathrm{~cm}^{3}$ of 0.1 M NaOH to $40 \mathrm{~cm}^{3}$ of 0.1 M HCl

Solution

Moles of Hydrochloric acid;
$1000 \mathrm{~cm}^{3}$ of solution contain 0.1 moles of HCl
$40 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.1 \times 40}{1000}\right)$ moles $=4 \times 10^{-4}$ moles
Moles of sodium hydroxide;
$1000 \mathrm{~cm}^{3}$ of solution contain 0.1 moles of NaOH
$20 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.1 \times 20}{1000}\right)$ moles $=2 \times 10^{-3}$ moles
$\mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq)}} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
From the reaction equation, 1 mole of NaOH reacts with 1 mole of HCl
Moles of HCl that reacted $=$ moles of sodium hydroxide, 2×10^{-3} moles
Moles of unreacted/excess $\mathrm{HCl}=\left(4 \times 10^{-3}-2 \times 10^{-3}\right)=2 \times 10^{-3}$ moles
Total volume of solution $=(20+40) \mathrm{cm}^{3}=60.0 \mathrm{~cm}^{3}$
$60 \mathrm{~cm}^{3}$ of solution that contains 2×10^{-3} moles of HCl
$1000 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{2 \times 10^{-8} \times 1000}{60}\right)$ moles $=0.033 \mathrm{M}$
$\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-}$
1 mole of HCl ionizes to produce 1 mole of H^{+}

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=0.0333 \mathrm{M}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log (0.033) \\
& \mathbf{p H}=\mathbf{1 . 4 8}
\end{aligned}
$$

STRONG ALKALI VS WEAK ACID ($\mathrm{CH}_{3} \mathbf{C O O H}$ VS NaOH)

Volume of NaOH added $\left(\mathrm{cm}^{3}\right)$

- pH of the ethanoic acid is slightly higher compared to that of HCl . Ethanoic acid is a weak acid, only partly ionized in solution producing few hydrogen ions.
- Addition of $\mathrm{NaOH}, \overline{\mathrm{O}} \mathrm{H}$ from the NaOH reacts with H^{+}of the solution, leading to an increase in pH along AB
-pH at endpoint, when equivalent amounts of NaOH and CH 3 COOH are present is greater than 7 ie 9 reason
- NaOH reacts with ethanoic acid to produce sodium ethanoate

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{CH} 3 \mathrm{COONa}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}
$$

- Salt formed undergoes hydrolysis producing excess $\bar{O} \mathrm{H}$ ions;

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq)}}+\mathrm{Na}_{(\mathrm{aq})}^{+} \\
& \mathrm{CH}_{3} \mathrm{CO} \bar{O}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\bar{O} \mathrm{H}_{(\mathrm{aq})}
\end{aligned}
$$

- Excess $\bar{O} \mathrm{H}$ produced rises the pH along BC from $8-10$.
- Between CD rise in pH is due to the excess NaOH added
- Phenolphthalein is the most suitable indicator.

Example

1. Calculate the pH of the solution obtained when $20 \mathrm{~cm}^{3}$ of 0.1 M NaOH is added to $10.0 \mathrm{~cm}^{3}$ of 0.1 M $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{Ka}=1.8 \times 10^{-5} \mathrm{moldm}^{-3}\right)$

Solution

Moles of ethanoic acid
$1000 \mathrm{~cm}^{3}$ of solution contains 0.1 mole of $\mathrm{CH}_{3} \mathrm{COOH}$
$100 \mathrm{~cm}^{3}$ of solution will contain $\left(\frac{0.1 \times 100}{1000}\right)$ moles $=0.01$ moles

Moles of NaOH
$1000 \mathrm{~cm}^{3}$ of solution contains 0.1 mole of NaOH
$20 \mathrm{~cm}^{3}$ of solution will contain $\mathbf{0 . 0 0 2}$ moles
$\mathrm{CH}_{3} \mathrm{COOH}_{(\text {(aq) }}+\mathrm{NaOH}_{(\text {(aq) }} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
1 mole of acid reacts 1 mole of NaOH to produce 1 mole of salt
0.002 moles of acid reacts 0.002 moles of NaOH to produce 0.002 moles of salt

Moles of unreacted $/$ excess acid $=0.01-0.002=0.008 \mathrm{moles}$
Total volume of solution $=100+20=120 \mathrm{~cm}^{3}$
$120 \mathrm{~cm}^{3}$ of solution contains 0.008 moles
$1000 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.008 \times 1000}{120}\right)$ moles

$$
=0.067 \mathrm{moles}^{-1}
$$

Salt formed and unreacted acid form a buffer solution;
$\mathrm{pH}=\mathrm{pKa}+\log \frac{[\text { salt }]}{[\text { acid }]}$
[salt] = ?
$120 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{3} \mathrm{COONa}$ contains 0.002 moles
$1000 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{3} \mathrm{COONa}$ contains $\left(\frac{0.002 \times 1000}{120}\right)$ moles $=0.01667 \mathrm{M}$
$\Rightarrow \mathrm{pH}=-\log \left(1.8 \times 10^{-5}\right)+\log \left[\frac{0.01667}{0.067}\right]$
$=4.14$
activity UNEB: 2001 paper 2 (4b)
Titration of strong acids and weak base ($\mathrm{HCl}^{\mathbf{~ V s ~}} \mathrm{NH}_{4} \mathbf{O H}$)
pH

A:
Low $\mathrm{pH}, \mathrm{HCl}$ is a strong acid which fully ionizes in solution; giving a high concentration of hydrogen ions

AB;

As the $\mathrm{NH}_{4} \mathrm{OH}$ is added;- $\overline{\mathrm{O}} \mathrm{H}$ ions from the base reacts with hydrogen ions in solution, pH rises BC;
-pH rises from 3.5 to 6.5 , ammonium solution reacts with HCl producing ammonium chloride.
-pH at end point is below 7;

Reason;-

$\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
-Salt formed undergoes hydrolysis in water

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}^{+(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-} \\
& \mathrm{NH}_{4}^{+(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}+\mathrm{H}_{(\mathrm{aq})}^{+}
\end{aligned}
$$

-Hydrolysis leaves excess of H^{+}ions; hence pH less than 7
-Further rise in pH along CD is due to excess of $\mathrm{NH}_{4} \mathrm{OH}$ is added.
-Methyl orange is a suitable indicator.

Example

Calculate the pH of a solution when $100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ is added to $20 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{HCl}(\mathrm{Kb}$ for $\mathrm{NH}_{3}=2.12 \times 10^{-5}$)

Solution

Moles of $\mathrm{NH}_{4} \mathrm{OH}$
$1000 \mathrm{~cm}^{3}$ of solution contains 0.1 moles of NaOH
$100 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.1 \times 100}{1000}\right)$ moles $=0.01$ moles
Moles of HCl
$1000 \mathrm{~cm}^{3}$ of solution contains 0.1 moles of HCl
$20 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.1 \times 20}{1000}\right)$ moles $=2 \times 10^{-3}$
$\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
From the equation of reaction above,
Excess moles of base $=(0.01-0.002)=0.008$ moles
Total volume $=(100+20)=120 \mathrm{~cm}^{3}$
$120 \mathrm{~cm}^{3}$ of solution contains 0.008 moles of $\mathrm{NH}_{4} \mathrm{OH}$
$1000 \mathrm{~cm}^{3}$ of solution contains $\left(\frac{0.008 \times 1000}{120}\right)$ moles of $\mathrm{NH}_{4} \mathrm{OH}$

$$
=0.0167 \mathrm{M}
$$

From $\mathrm{p}^{\mathrm{OH}}=\mathrm{p}^{\mathrm{Kb}}+\log \frac{[\text { salt }]}{[\text { base }]}$
$\Rightarrow \mathrm{p}^{\mathrm{OH}}=-\log \left(2.12 \times 10^{-5}\right)+\log \frac{(0.0167)}{(0.0667)}$

$$
\mathrm{p}^{\mathrm{OH}}=4.07
$$

\Rightarrow from $\mathrm{p}^{\mathrm{Kw}}=\mathrm{p}^{\mathrm{H}}+\mathrm{p}^{\mathrm{OH}}$

$$
\mathrm{p}^{\mathrm{H}}=\mathrm{p}^{\mathrm{Kw}}-\mathrm{p}^{\mathrm{OH}}
$$

$$
=14-4.07
$$

$$
\mathrm{p}^{\mathrm{H}}=9.93
$$

Activity . Uneb 2012 (paper 2, 3b)

Titrations of weak acids and weak bases eg $\mathrm{CH}_{3} \underline{\mathrm{COOH} \text { and } \mathrm{NH}_{4} \mathrm{OH}}$

$-\mathrm{p}^{\mathrm{H}}$ range between $6.5-7.5$
-no suitable indicator can be used; there is no sharp change in pH art any point

SOLUBILITY PRODUCT

Consider a sparingly soluble salt silver bromate, AgBrO_{3}
$-\mathrm{AgBrO}_{3}$ added to water, a saturated solution (containing both the ions \& undissolved solute) is formed -Equilibrium is established between ions and excess undissolved solute, AgBrO_{3}

$$
\mathrm{AgBrO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{BrO}_{3(\mathrm{aq})}^{-}
$$

Excess
undissolved
Solute

$$
\begin{aligned}
& \text { By law of mass action, } \quad \mathrm{Kc}=\frac{\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]\left[\mathrm{BrO}_{3}^{-}(\mathrm{aq})\right]}{\left.\left[\mathrm{AgBrO3}_{(\mathrm{s})}\right)\right]} \\
& \mathrm{Kc}[\mathrm{AgBrO3}]=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{BrO}_{3}^{-}\right]
\end{aligned}
$$

But; [$\mathrm{AgBrO3}]=$ constant
$\mathrm{Kc} \times[$ AgBrO3] $=\mathbf{K s p}$ (solubility product)
Therefore, $\mathrm{Ksp}=\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]\left[\mathrm{BrO}_{3}^{-}(\mathrm{aq})\right]$
Generally for a saturated solution of a sparingly soluble salt

$$
\mathrm{A}_{x} \mathrm{By}_{(\mathrm{s})} \rightleftharpoons \mathrm{xA}_{(\mathrm{aq})}^{+y}+y \mathrm{yB}_{-} \mathrm{x}_{(\mathrm{aq})}
$$

$$
\mathbf{K s p}=\left[\mathbf{A}^{+y}\right]^{x}\left[\mathbf{B}^{-x}\right]^{y}
$$

Definition

-Solubility product (Ksp) is the product of the molar concentration of ions raised to their powers of stoichiometric coefficients in a saturated solution of a sparingly soluble salt of an ionic compound of a given temperature;
ACTIVITY.
Write an expression for the solubility product of;
(i). $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ (ii). $\mathrm{AgCl} \quad$ (iii). $\mathrm{PbI}_{2} \quad$ (iv). $\mathrm{Ca}(\mathrm{OH})_{2}$

Limitations of solubility product/condtions of solubility product

-Valid for only saturated solutions
-Only valid at constant temperature
-Only applied for sparingly soluble salts

Example

1. The solubility of Calcium hydroxide in water at $20^{\circ} \mathrm{C}$ is $2.78 \mathrm{gdm}^{-3}$. What is the solubility product ($\mathrm{Ca}=40, \mathrm{O}=16, \mathrm{H}=1$)

Solution:

Relative formula mass of $\mathrm{Ca}(\mathrm{OH})_{2}=40+(16 \times 2)+(1 \times 2)=74$
1 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ weighs 74 g
X mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ will weigh 2.78
\therefore Molarity $=\frac{2.78}{74}=0.038 \mathrm{dm}^{-3}$
$\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=0.038 \mathrm{dm}^{-3}$
$\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} \rightleftharpoons \mathrm{Ca}^{2+}{ }_{\text {(aq) }}+2 \overline{\mathrm{O}} \mathrm{H}_{\text {(aq) }}$
$\left[\mathrm{Ca}^{2+}\right]=0.038 \mathrm{dm}^{-3}$
$[\bar{O} H]=2 \times 0.038=0.076 \mathrm{moldm}^{-3}$
$\mathrm{Ksp}=\left[\mathrm{Ca}^{2+}\right][\overline{\mathrm{O}} \mathrm{H}]^{2}$

$$
=0.038 \times(0.076)^{2}
$$

$K s p=2.19 \times \mathbf{1 0}^{-4} \mathbf{m o l}^{3} \mathbf{d m}^{-9}$
2. The solubility product of silver Carbonate at $20^{\circ} \mathrm{C}$ is $8 \times 10^{-2} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$. What is the solubility at this temperature?

Solution

From, $\mathrm{Ag}_{2} \mathrm{CO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{Ag}^{+}{ }_{(\text {aq })}+\mathrm{CO}_{3}^{2-}{ }^{\text {(aq) }}$
If the solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3(\mathrm{~s})}$ is S moldm ${ }^{-3}$
$\left[\mathrm{Ag}^{+}\right]=2 \mathrm{~S} \mathrm{moldm}{ }^{-3}$
$\left[\mathrm{CO}_{3}^{2-}\right]=\mathrm{S} \mathrm{moldm}^{-3}$
$\mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]$
$8 \times 10^{-2}=(2 S)^{2} S$
$8 \times 10^{-2}=4 \mathrm{~S}^{3}$
Solubility $=\mathbf{0 . 2 7} \mathrm{moldm}^{-3}$
Activity:

1. Calculate the solubility of silver ethanedioate $\left(\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ in water. $\left(\mathrm{Ksp}\right.$ of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=5 \times 10^{-12}$ $\mathrm{mol}^{-3} \mathrm{dm}^{-9}$)
2.The solubility of AgCl at $18^{0} \mathrm{C}$ is $1.46 \times 10^{-3} \mathrm{gdm}^{-3}$. What is the solubility product $(\mathrm{Ag}=108, \mathrm{Cl}=35.5)$ 3. The solubility product of calcium Phosphate at $25^{0} \mathrm{C}$ is $6 \times 10^{-29} \mathrm{~mol}^{5} \mathrm{dm}^{-15}$. Calculate the solubility of Calcium phosphate in gdm^{-3} at $25^{\circ} \mathrm{C}$.

FACTORS AFFECTING THE SOLUBILITY OF SPARINGLY SOLUBLE SALT.

(i) Common ion effect:
-Is the precipitation of a sparingly soluble ionic compound from a saturated solution by addition of another soluble compound containing a similar ion
Consider a saturated solution of PbSO_{4};
$\mathrm{PbSO}_{4} \rightleftharpoons \mathrm{~Pb}^{2+}{ }_{(\text {aq })}+\mathrm{SO}_{4}^{2-}{ }_{4}^{\text {(aq) }}$
Addition of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution;
-More Pb^{2+} ions, a common ion is produced; increasing the concentration of Pb^{2+} in the equilibrium.
-To restore the equilibrium, excess Pb^{2+} from $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacts with SO_{4}^{2-} to precipitate PbSO_{4}
-This decreases solubility of PbSO_{4}
Example:

1. Calcium iodate, $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ is sparingly soluble in water. Write an,
(a) (i) equation for the solubility of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$
(ii) expression for the solubility product Ksp of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$
(b) If the Ksp of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ at $25^{\circ} \mathrm{C}$ is $1.95 \times 10^{-4} \mathrm{moldm}^{-3}$. Calculate the solubility in moldm ${ }^{-3}$. Calculate the solubility in moldm^{-3} at $25^{\circ} \mathrm{C}$.
i. In water
ii. $\quad 0.1 \mathrm{M}$ solution of NaIO_{3}.
(c) Comment on your answer in (b) above UNEB 2006(1) No. 17

Solution

1 (a)(i) $\quad \mathrm{Ca}\left(\mathrm{IO}_{3}\right) 2_{(\mathrm{s})} \rightleftharpoons \mathrm{Ca}^{2+}{ }_{\text {(aq) }}+2 \mathrm{IO}_{3}^{-}{ }^{-}{ }^{\text {aq })}$
(ii) $\mathrm{Ksp}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{IO}_{3}\right]^{2}$
(b) (i). From , $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2(\mathrm{~s})} \rightleftharpoons \mathrm{Ca}^{2+}{ }_{(\text {aq })}+2 \mathrm{IO}_{3}^{-}{ }_{\text {(aq) }}$

Let the solubility of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ be m moldm ${ }^{-3}$

$$
\Rightarrow\left[\mathrm{Ca}^{2+}\right]=\mathrm{m} \quad\left[\mathrm{IO}_{3} \overline{-}\right]=2 \mathrm{~m}
$$

From Ksp $=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}$
$\Rightarrow 1.9 \times 10^{-4}=(\mathrm{m})(2 \mathrm{~m})^{2}$
$4 \mathrm{~m}^{3}=1.9 \times 10^{-4}$
$\mathrm{m}=\sqrt[s]{\frac{.9 \times 10^{-4}}{4}}$
$=0.036 \mathrm{moldm}^{-3}$
Solubility of $\mathbf{C a}\left(\mathrm{IO}_{3}\right)_{2}$ is $0.036 \mathrm{moldm}^{-3}$ in water
(ii) 0.1 M of NaIO_{3}
$\mathrm{NaIO}_{3(\mathrm{qq)}} \rightleftharpoons \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{IO}_{3(\mathrm{aq})}^{-}$
Let the new solubility of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ in iodate solution be $\mathrm{S}^{\prime} \mathrm{moldm}^{-3}$
$\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2(\mathrm{~s})} \rightleftharpoons \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{IO}_{3}^{-}$
Solubility of $\mathrm{Ca}^{2+}=\mathrm{S}^{\prime}$ moldm ${ }^{-3}$
Solubility of $\mathrm{IO}_{3}^{-}=\left(2 \mathrm{~S}^{\prime}+0.1\right)$
But $S^{\prime} \lll \lll 0.1,\left(2 S^{\prime}+0.1\right) \cong 0.1$
$\mathrm{Ksp}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]$
$1.95 \times 10^{-4}=S^{\prime}(0.1)^{2}$
Solubility of $\mathbf{C a}\left(\mathrm{IO}_{3}\right)_{2}$ in iodate solution $\mathrm{S}^{\prime}=\mathbf{0 . 0 1 9 5} \mathrm{moldm}^{-3}$
(c.) Comment

- Solubibilty of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ in NaIO_{3} is lower than that in water; because in NaIO_{3} concentration of IO_{3}^{-}is higher; therefore IO_{3}^{-}react with Ca^{2+} to precipitate out $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$

Activities:

UACE 2000(1) no 12, 2005(1) no 17, 2004(1) no 17, 2003(1) no 17, 2001(1) no 16(a, b(i).

ii) Complex ion formation:

-Increases solubility of a sparingly soluble salt i.e.
Consider solubility of AgCl in water,

$$
\mathrm{AgCl}_{(\mathrm{s})}+\rightleftharpoons \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

- Addition of ammonia solution, ammonia reacts with silver ions, forming diamine silver ion complex .

$$
\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{NH}_{3(\mathrm{aq})} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}
$$

- Concentration of Ag^{+}decreases;
- to restore equilibrium, AgCl solid ionizes to produce more Ag^{+}ions, increasing the solubility.

Example.

a) State how the solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is affected if the following substances were added;
i) $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}$
ii) $\quad \mathrm{NH}_{4} \mathrm{OH}$
b) Explain your answer in (a) (UACE, 2001(1) no. 16 (b)

Solution

a) (i). solubility would decrease
(ii) Solubility would increase
b) $\mathrm{a}(\mathrm{i})$

- $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is a strong electrolyte; therefore strongly ionizes in aqueous solution to form a higher concentration of SO_{4}^{2-} ions
$-\mathrm{Ag}^{+}$react with excess $\mathrm{SO}_{4}^{2^{-}}$ions ; forming solid silver sulphate, $\mathrm{Ag}_{2} \mathrm{SO}_{4}$; hence decreasing solubility.
(ii) Ammonia react with Ag^{+}to form a complex; decreasing the concentration of Ag^{+}in solution; therefore more silver sulphate dissolves to restore the equilibrium, hence increasing solubility of the salt.

APPLICATION OF COMMON ION EFFECT

i. Purification of common salt: ($\mathbf{N a C l}$)

-NaCl contains small quantities of MgCl_{2} and CaCl_{2} as impurities.
-This causes it to be deliquesecent (absorb water from the atmosphere and appear damp)
-Pure NaCl is obtained by passing HCl gas into a saturated solution of impure NaCl (Addition of
HCl gas provides Cl^{-}which precipitate only pure NaCl$)$

ii. Salting out of soap:

Saturated solution of soap, sodium stearate (Nast) contains the following ions;
$\mathrm{Nast}_{(\mathrm{s})} \rightleftharpoons \mathrm{Na}^{+}{ }_{\text {(aq) }}+\mathrm{St}^{-}{ }_{(\mathrm{aq})}$
During saponification (soap making), concentrated solution of NaCl is added
More Na^{+}are produced, excess Na^{+}react with St^{-}to precipitate soap
$\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{St}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{NaSt}_{(\mathrm{s})}$

APPLICATIONS OF SOLUBILITY PRODUCT ON OUALITATIVE ANALYSIS

-Used in predicting precipitation of salts eg sulphides, hydroxides, chlorides, etc
NB: For saturated solution, ionic product is equal to solubility Product; therefore can be used to predict whether or not precipitation occurs.
Therefore if,
i. Ionic product is greater than the solubility product, solution is supersaturated, precipitation will occur
ii. If ionic product is less than the solubility product, solution is unsaturated, precipitation will occur not occur.

Example:

1. Predict whether or not precipitation occurs when $0.001 \mathrm{moldm}^{-3}$ solution of Ca^{2+} is mixed with an equal volume of a $0.001 \mathrm{moldm}^{-3}$ solution of $\mathrm{SO}_{4}^{2^{-}}$at $25^{\circ} \mathrm{C}$. $\left(\mathrm{Ksp}\right.$ of $\mathrm{CaSO}_{4}=2 \times 10^{-5} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at $25^{\circ} \mathrm{C}$). Show your working.

Solution

-Mixing equal volumes of the two ions, molar concentration of the ions are halved, because each solution is diluted by mixing with the other.
new $\left[\mathrm{SO}_{4}^{2^{-}}\right]=\frac{0.001}{2}=0.0005 \mathrm{moldm}^{-3}$
new $\left[\mathrm{Ca}^{2+}\right]=\frac{0.001}{2}=0.0005 \mathrm{moldm}^{-3}$
Ionic product immediately after mixing

$$
\begin{aligned}
\text { Ionic product } & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right] \\
& =0.0005 \times 0.0005 \\
& =2.5 \times 10^{-7} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
\end{aligned}
$$

Ionic product, $2.5 \times 10^{-7} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ is less than the solubility product; no precipitation occurs.
2. $20 \mathrm{~cm}^{3}$ of 0.01 M Barium chloride solution and $20 \mathrm{~cm}^{3}$ of 0.005 M solution of Sodium Sulphate are mixed at $25^{\circ} \mathrm{C}$. Determine whether or not precipitation occurs(Ksp of Barium sulphate is 1×10^{-20} $\mathrm{mol}^{2} \mathrm{dm}^{-6}$).

Solution

$$
\begin{aligned}
& \underset{\mathrm{BaCl}_{2(\mathrm{aq})}}{ } \rightleftharpoons \underset{ }{\mathrm{Sa}^{2+}}{ }_{(\mathrm{aq)}}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \\
& 0.01 \quad 0.01 \\
& \mathrm{Na}_{2} \mathrm{SO}_{4)} \rightleftharpoons 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-} \\
& 0.005 \quad 0.005
\end{aligned}
$$

Mixing 2 equal volumes, the concentration of the ions are halved,
$\left[\mathrm{Ba}^{2+}\right]=\frac{0.01}{2}=5 \times 10^{-3} \mathrm{moldm}^{-3}$
$\left[\mathrm{SO}_{4}^{2^{-}}\right]=\frac{0.005}{2}=2.5 \times 10^{-3} \mathrm{moldm}^{-3}$
Ionic product $=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2^{-}}\right]$

$$
=\left(2.5 \times 10^{-3}\right)\left(5 \times 10^{-3}\right)=1.25 \times 10^{-5} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
$$

Ionic product, $1.25 \times 10^{-5} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ is greater than the solubility constant value, there precipitation will occur.

ACTIVITY

1. A solution containing Ag^{+}was added to a solution containing 0.005 M Chromate ions and $0.005 \mathrm{M} \mathrm{Cl}^{-}$. State which of the salts, AgCl or $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ was precipitated first. Give a reason for your answer.
2. A solution is 0.01 M in cuprous ion, $\left(\mathrm{Cu}^{+}\right)$and 0.001 M in lead (II) ion. Cl^{-}is slowly added, will lead (II) Chloride ($\mathrm{Ksp}=1.6 \times 10^{-5} \mathrm{~mol}^{3} / \mathrm{l}^{2}$) or $\mathrm{CuCl}\left(\mathrm{Ksp}=3.2 \times 10^{-7} \mathrm{~mol}^{3} / \mathrm{l}^{2}\right)$ precipitate first? Show your working.

Experimental determination of solubility product

Solubility product can be determined directly by;
$>$ Direct titration or Titrimetric method
$>$ Ion exchange
$>$ Conductivity measurements
a) Direct titration

i. $\quad \mathbf{C a}(\mathbf{O H})_{2}$

- A Known volume of water is placed in a bottle and a known mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ is added to it.
- The bottle is corked, shaken for about 35 minutes,at fixed temperature; allowed to settle for equilibrium to be attained.
- Know volumes of clear solution are then pippeted into a conical flask, titrated with a standard solution of HCl using methyl orange indicator.
- Knowing the number of molecules of HCl , number of moles and concentration of $\bar{O} \mathrm{H}$ can be calculated.
$\left.\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{~s})}\right)+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
- Concentration of Ca^{2+} can be determined from $\left[\left[\mathrm{Ca}^{2+}\right]=1 / 2[\bar{O} \mathrm{H}]\right.$ from mole ratio
$\Rightarrow \mathrm{Ksp}=\left[\mathrm{Ca}^{2+}\right]\left[\overline{\mathrm{O}} \mathrm{H}^{12}\right.$
ii. Potassium Iodate in water
- A known volume of distilled water is placed in a bottle and a known mass of Potassium iodate is added.
- The bottle is stoppered, shaken for a period of time, at fixed temperature, allowed to settle to reach equilibrium.
- After equilibrium has been attained, known volumes of the clear saturated solution are pipetted into a conical flask containing potassium iodide with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{O}
$$

- Iodine liberated is then titrated with standard thiosulphate solution using starch as an indicator
$2 \mathrm{~S}_{2} \mathrm{O}_{3^{(\mathrm{aq})}}^{2^{-}}+\mathrm{I}_{2(\mathrm{~g})} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}{ }_{(\mathrm{aq})}+2 \mathrm{I}^{-}{ }_{(\mathrm{aq})}$
- Titrate until when the solution turns blue, repeat and note the average volume of the thiosulphate solution used.
- Knowing the concentration of the thiosulphate, mole of Iodine liberated can be determined, from which concentration of iodate ions can be obtained.
$\left[\mathrm{IO}_{3}^{-}\right]=\left[\mathrm{K}^{+}\right]$
$\mathrm{K} s \mathrm{p}=\left[\mathrm{IO}_{3}\right]\left[\mathrm{K}^{+}\right]$

