CORONA RECESS SERIES 2020

GEOMETRY ONE:

INTERCEPTS

1. Find the equation of a straight line of gradient 3 which cuts the y-axis at $(0,1) .(y=3 x+1)$
2. Find the gradient of the straight line $7 x+4 y+2=0$, and its intercepts on the axes. $\quad(m=-7 / 4$,$) intercepts are -2 / 7$ and $-1 / 2$.

POINTS OF INTERSECTION:

1. Find the equation to the line which passes through the point $(3,2)$ and the point of intersection of the lines $2 x+3 y-1=0$ and $3 x-4 y-6=0$. $(43 x-29 y=71)$

PARALLEL AND PERPENDICULAR LINES

1. Find the equation to the straight line which passes through the point $(-2,3)$ and is parallel to the line $7 x-y-6=0 . \quad(3 x+y=5)$
2. Find the equation to the line through the intersection of the lines $3 x-2 y+14=0, x+y=6$ and perpendicular to the line $5 x-6 y=0$.

$$
(30 x+25 y=148)
$$

3. Find the equation of the line through the origin which is perpendicular to the line $3 x-4 y+2=0$.

COORDINATES OF FOOT OF THE PERPENDICULAR

1. Find the length of the perpendicular from the origin on to the straight line passing through the two points $(6,4)$ and $(9,8)$.
2. Find the distance of the points $(2,-1)$ and $(1,1)$ from the line $3 x+4 y=6$.

$$
(4 / 5,1 / 5)
$$

3. Find the equation of a straight line joining the feet of the perpendiculars drawn from the point $(1,1)$ to the lines $3 x-3 y=4$ and $3 x+y=6$.

$$
(13 x+y=22)
$$

4. A triangle has vertices at $\mathrm{A}(0,8), \mathrm{B}(1,1)$ and $\mathrm{C}(5,3)$. Find the coordinates of the foot of the perpendicular from B to AC . Hence find the length of the perpendicular from B to $A C$. $(4,4), 3 \sqrt{2}$
5. Prove that the lines $O A$ and $O B$ are perpendicular where A, B are points $(4,3),(3,-4)$ respectively.

APPLICATION IN PARALLELOGRAM

Parallelogram

1. Prove that the four points $(4,0),(7,-3),(-2,-2),(-5,1)$ are the vertices of a parallelogram and the equations of its diagonals.
2. ABCD is a quadrilateral where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are the points $(3,-1),(6,0)$, $(7,3)$ and $(4,2)$. Prove that the diagonals bisect each other at right angles and hence find the area of ABCD. (8 sq. units)
3. ABCD is a parallelogram in which the coordinates of A, B and C are $(1,2),(7,-1)$ and $(-1,-2)$ respectively.
(a) Find the coordinates of D. $(-7,1)$
(b) Calculate the area of the parallelogram. 30 sq. units
(c) Find the length of the perpendicular from A to BC , leaving your answer in surd form. $\frac{6}{13} \sqrt{65}$ units.

Rhombus

1. ABCD is a rhombus. A is the point $(2,-1)$, and C is a point $(4,7)$. Find the equation of diagonal BD. $(x+4 y=15)$
2. One side of the rhombus is the line $y=2 x$, and two opposite vertices are $(0,0)$ and $\left(\frac{9}{2}, \frac{9}{2}\right)$. Find the equations of the diagonals , the coordinates of the other two vertices and length of the side.

$$
\left(x=y, 2 x+2 y=9,\left(\frac{3}{2}, 3\right),\left(3, \frac{3}{2}\right), \frac{3}{2} \sqrt{5}\right)
$$

3. The equations of two adjacent sides of a rhombus are $y=2 x+4, y=-\frac{1}{3} x+4$. If $(12,0)$ is one vertex and all vertices have positive coordinates, find the coordinates of the other three vertices.

$$
((0,4),(12+4 \sqrt{2}, 8 \sqrt{2}),(4 \sqrt{2}, 4+8 \sqrt{2}))
$$

4. One side of a rhombus lies along the line $5 x+7 y=1$ and one of the vertices is $(3,-2)$. One diagonal of the rhombus is the line $3 y=x+1$. Find
the coordinates of the other vertices and the equations of the three remaining sides. $\left(-\frac{2}{11}, \frac{3}{11}\right),(1,4),\left(4 \frac{2}{11}, 1 \frac{8}{11}\right)$,

$$
13 y-41 x=11,7 y+5 x=33,13 y-41 x=-149 .
$$

Square

1. Prove that the points $(-5,4),(-1,-2),(5,2)$ lie at the three corners of a square. Find the coordinates of the fourth corner and area of the square.

$$
(1,8), 52 \text { units }^{2} .
$$

Rectangle :

1. The points $\mathrm{A}(-7,-7), \mathrm{B}(8,-1), \mathrm{C}(4,9), \mathrm{D}$ are the vertices of a parallelogram ABCD . Find the coordinates of D. Prove that ABCD is a rectangle and find its area. $(-11,3), 174$.
2. $A(1,3), B(5,7), C(4,8), D(a, b)$ form a rectangle $A B C D$. Find a and b. $(0,4)$

APPLICATION IN A TRIANGLE

Medians of a triangle

1. Show that the point $(-6 / 7,0)$ is on the median through A of triangle ABC where A,B,C are points $(2,4),(-2,3)$ and $(1,-2)$.
2. P, Q and R are the points $(3,4),(7,-2)$ and $(-2,-1)$ respectively. Find the equation of median through R of the triangle PQR . $\quad(2 x-7 y=3)$
3. The three straight lines $x=y, 2 y=7 x$ and $x+4 y=60$ form a triangle. Find the equations of the three medians, and calculate the coordinates of their point of intersection.

$$
\left(13 x=18 y, 4 x+y=30,10 x+3 y=45,\left(\frac{16}{3}, \frac{26}{3}\right)\right)
$$

4. In the triangle $\mathrm{ABC}, \mathrm{A}, \mathrm{B}$ and C are points $(0,2),(1,5)$ and $(-1,4)$. Find the coordinates of the point D such that AD is a median and find the length of this median. $(0,9 / 2), \frac{5}{2}$.
5. The line $4 x-5 y+20=0$ cuts the x -axis at A and y -axis at B . Find the equation of median through O of triangle $\mathrm{OAB} .(5 y+4 x=0)$

Altitudes of a triangle

1. The line $4 x-5 y+20=0$ cuts the x -axis at A and y -axis at B . Find the equation of altitude through O of triangle $\mathrm{OAB} . \quad(4 y+5 x=0)$
2. The sides of a triangle are the lines $y=0, x-3 y+5=0$ and $2 x+y-$ $7=0$. Find the coordinates of the vertices of the triangle.
$(-5,0),\left(\frac{7}{2}, 0\right),\left(\frac{16}{7}, \frac{17}{7}\right)$

Perpendicular bisectors of a triangle

1. Find the equation of a perpendicular bisector of the line joining the points $A(2,-3)$ and $B(6,5) . \quad(2 y+x=6)$
2. A,B and C are the points $(0,4),(2,3)$ and $(-2,-1)$ respectively. Find the circumcentre of triangle ABC. $(-1 / 6,7 / 6)$
3. Find the circumcentre of a triangle with vertices $(-3,0),(7,0)$ and $(9,-6)$. (2,-5)
4. A,B,C are points $(1,6),(-5,2),(3,4)$ respectively. Find the equations of the perpendicular bisectors of AB and BC . Hence find the coordinates of the circumcenter of the triangle $\mathrm{ABC} . \quad\left(3 x+2 y=2,4 x+y=-1,\left(-\frac{4}{5}, \frac{11}{5}\right)\right)$
