1.	$\int_{2}^{3} (6x^2 - 1) dx = \frac{6x^2}{3} - x \int_{2}^{3}$	
	$=2x^3-x\int_2^3$	
	$=(2(3)^3-3)-(2(2)^3-2)$	
	=(54-3)-(16-2)	
	=51-14 = 37	
2.	$\log_3^{(3x+1)} - \log_3^{(3x-1)} = 2$	
	$\log_{3}^{\left(\frac{2x+1}{3x-11}\right)} = 2$	
	_ ;	
	$=\frac{2x+1}{3x-11}=2^3$	
	$=\frac{2x+1}{3x-11}=\frac{9}{1}$	
	3x-11 1 = 9(3x-11)=2x+1	
	= 27x - 99 = 2x + 1	
	$= 25x = 100$ $x = \frac{100}{25} = 4$	
	$\frac{\lambda - \frac{1}{25} - 4}{1}$	
3.	$ \mathbf{r} \cdot \mathbf{r} = \begin{pmatrix} \mathbf{r} \\ \mathbf{r} \\ z_1 \end{pmatrix} \begin{pmatrix} \mathbf{r} \\ z_2 \end{pmatrix} \cos \theta $	
	(3)(2)	
	$\begin{pmatrix} 3 \\ 2 \\ 7 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ -4 \end{pmatrix} = \sqrt{(3)^2 + (2)^2 + (7)^2} \cdot \sqrt{(2)^2 + (4)^2 + (-5)^2} \cos \theta$	
	$6+8-35=\sqrt{62}.\sqrt{45}\cos\theta$	
	$\cos \theta = \frac{-21}{\sqrt{62 \times 45}}$	
	$\mathcal{G} = \cos^{-1}\left(\frac{21}{\sqrt{2790}}\right)$	
4.	$\mathcal{G} = 113.4$ Let x represent he weight of the students	
4.	$p(66 \prec x \prec 79) = p\left(\frac{66 - 67.6}{6.2} \prec z \prec \frac{79 - 67.6}{6.2}\right)$	
	$= p(-0.258 \prec z \prec 1.839)$	

$ \begin{array}{c c} 0 \\ 1 \\ 0 \\ \hline \sum x \ f(0) \\ var(x) = \\ = 4.1 - (1) \\ = 0.49 \\ 6. \text{Let}^{S_9} \text{ and} \\ u = 0ms^{-1} \end{array} $	$E(x^2) - (E$	$x^{2} f(x)$ 0 0.3 2.0 1.8 $\sum x^{2} f(x) = 4.1$ $f(x))^{2}$			
u = 0ms					
$S = ut + \frac{1}{2}$ $S_9 = \frac{1}{2} \times \frac{81a}{2}$ $S_{10} = \frac{1}{2} \times \frac{100a}{2}$ In the 10 th $S_{10} - S_9 = \frac{100a}{2}$ $\frac{100a}{2} = \frac{8}{2}$	$\frac{1}{2}at^{2}$ $(a \times 81)$ $(a \times a \times 100)$ th second		seconds and 0 seconds $u = 0ms^{-1}$ $a = 1ms^{-1}$ $t = 5 \sec onds$ $S = ut + \frac{1}{2}at^{2}$ $S = \frac{1}{2}(1)(5)^{2}$ $S = \frac{25}{2} = 12.5m$		

7.	3x + y =	- Д						
,.	$\begin{vmatrix} 3x + y - 4y \\ 2x - 4y \end{vmatrix}$							
	$\begin{pmatrix} 31 \\ 2^-4 \end{pmatrix}$							
	$\left(-4^{-1} \right)$							
	$\begin{pmatrix} -4^{-1} \\ -23 \end{pmatrix}$							
	(-12^{-2})							
	$\begin{bmatrix} -12^{-2} \\ -6+6 \end{bmatrix}$							
	(-140)							
	$ \begin{pmatrix} -140 \\ 0^-14 \end{pmatrix} $							
	-14x = -							
	x=3							
	-14y =	70						
	y=5							
	$\therefore x = 3a$							
8.		-						
	R_x	R_y	d	d^2	$\int = \frac{6\sum d^2}{b(n^2 - 1)}$			
	1	1	0	0	$J = \frac{1}{h(n^2 - 1)}$			
	8	8	0	0				
	5 2	5	0	0	$=/-\frac{6}{10(99)}$			
	6.5	2.5 7	-0.5 -0.5	0.25 0.25				
	6.5	6						
	10	10	0.5	0.25 0	=1-0.00606067			
	3	2.5	0.5	0.25	_			
	4	4	0	0	= 0.9939393			
	9	9	0	$\mathbf{\nabla} \mathbf{I}^2$	$\approx 0.9939(4dp)$			
			L	_				
9.				positive corre	elation			
9.	$S_n = \frac{n}{2}$							
	$u_n = a + (n-1)d$							
	$u_5 = a +$							
	$u_6 = a +$	⊦ 6 <i>d</i>						
	3a+15a	d = 95	(i)					
	$U_{10} = a$	+9d = 4	49					
		= 45						
	Solving							
	3(49 – 9							

$$\begin{vmatrix} 147 - 274 + 15d = 95 \\ 52 = 12d \\ d = \frac{13}{13} \\ a = 49 - 9d \\ a = 10 \end{vmatrix}$$

$$S_{22} = \frac{22}{2}(2(10)) + (22 - 1)\frac{13}{3} \\ = 11\left(20 + 11\left(\frac{13}{3}\right)\right) \\ = 744.333333333333 \\ \approx 744.3333934dp)$$

$$Total savings \\ = 60000 + (60000 + 5000(1 + 2 + 3 + - - + 20)) \\ = 20 \times 60000 + 5000\left(\frac{20}{2}(2(1)) + 19(1)\right) \\ = 1200000 + 5000\left(\frac{20}{2}(2(1)) + 19(1)\right) \\ = 1200000 + 5000(0|21)) \\ = 1200000 + 5000(0|21) \\ = shs.2,250,000$$

$$10. M_1 = \frac{234 + 926 + 653 + 431}{4} M_6 = \frac{978 + 704 + 472 + 296}{4} \\ = \frac{2244}{4} = \frac{245}{4} \\ = 561.00 = 612.5$$

$$M_2 = \frac{926 + 653 + 431 + 275}{4} M_7 = \frac{704 + 472 + 296 + 1003}{4} \\ = \frac{2285}{4} = \frac{2475}{4} \\ = 571.25 = 618.75$$

$$M_3 = \frac{431 + 431 + 275 + 978}{4} M_8 = \frac{472 + 296 + 1003 + 728}{4} \\ = \frac{2337}{4} = \frac{2499}{4} \\ = 584.25 = 624.75$$

	$M_4 = \frac{431 + 275 + 978 + 704}{4} M_9 = \frac{296 + 1003 + 728 + 498}{4}$	
	$=\frac{2388}{4}=\frac{2525}{4}$	
	= 597 = 631.25	
	$M_5 = \frac{275 + 978 + 704 + 472}{4}$	
	$=\frac{2429}{4}$	
	= 607.25	
	(c) 103 + 728 + 408 + x	
	$=\frac{103+728+498+x}{4}=665$	
	·	
	$=\frac{2229+x}{4}=665$	
	x + 2229 = 2660	
	x = 2660 - 2229 $x = 431$	
	Number of shows that were sold in the first quarter of 2016 was 431 pairs	
	of shoes.	
11.	$p(AUB)^{1} = -P(AUB) = \frac{1}{4}$	
	$p(PnA) + P(A)P(B) = \frac{1}{4} - 0$	
	$p(AUB)^{1} = -P(AUB) = \frac{1}{4}$ $p(PnA) + P(A)P(B) = \frac{1}{4} - 0$ $1 - (PCA) + P(B) - \frac{1}{4} = \frac{1}{4}$ $P(A) + P(B) - \frac{1}{4} = 1 - \frac{1}{4}$	
	$P(A)+P(B)-\frac{1}{4}=1-\frac{1}{4}$	
	$\frac{4P(A)+4P(B)-1}{4} = \frac{3}{4}$	
	$\frac{4}{2}$	
	4P(A) + 4P(B) = 4	
	P(A) + P(B) = 1(i)	
	4p(A)p(B)=1(ii)	
	4p(A)(1-P(A))=1	
	$4P(A)-4P(P(A))^{2} = 1$ $Utp(A)=t$	
	$\begin{aligned} Ctp(A) &= t \\ 4t - 4t^2 &= 1 \end{aligned}$	
	$4t - 4t = 1$ $4t^2 - 4t = 0$	
	sum = 4	
	pud = 4	

	factors(-2,-2)	
	$4t^2 - 2t - 2t + 1 = 0$	
	2t(2t-1)-(2t-1)=0	
	(2t-1)(2t-1)=0	
	$t=\frac{1}{2}$	
	$p(A) = \frac{1}{2}$	
	P(B)=1-P(A)	
	$=1-\frac{1}{2}$	
	$=1-\frac{1}{2}$	
	$=\frac{1}{2}$	
	$\therefore P(A) = 0.5 \text{ and } p(B) = 0.5$	
	P = 0.5 $P = 0.6$	
	Q = 0.4	
	N = 8	
	E(x) = nP	
	E(x) - hI = $8 \times 0.6 = 4.8$	
	$\approx 5 drivers$	
	9 / \\2 / \\5	
	$(ii) p(x = 3) = {}_{3}^{8} C(0.6)^{3} (0.4)^{5}$	
	= 0.1239(4dp)cal	
	$(iii) p(x \succ 6) = p(x \ge 7)$	
	= p(x = 7) + p(x = 8)	
	$= {}^{8}_{7} C(0.6)^{7} (0.4)^{1} + {}^{8}_{8} C(0.6)^{8} (0.4)^{0}$	
	= 0.0896 + 0.0168 $0.1064(4dp)cal$	
12.		
	$y = x^3 - \frac{2}{3}x^2 - 6x + 12$	
	$\frac{d^2y}{dx^2} = 3x^3 - 2\frac{3}{2}x - 6$	
	$\begin{vmatrix} =3x^2 - 3x - 6 \\ =3(x^2 - x - 2) \end{vmatrix}$	
	= 3(x - x - 2)	
	$\frac{d^2y}{dx^2} = 6x - 3$	
	$\begin{vmatrix} ax \\ = 3(2x-1) \end{vmatrix}$	
	$3x^2 - 3x - 6 = 0$	

```
x^{2} - \overline{x - 2} = 0
        sum = -1
        pud = -2
       factor(-2,1)
       x^2 + x - 2x - 2 = 0
       x(x+1)-2(x+1)=0
       (x-2)(x+1)=0
       x = 2 \text{ or } x^{-1}
       When x = 2
       y = (-1)^3 - \frac{2}{3}(2)^2 - 6(2) + 12
       =-1-\frac{2}{3}+6+12
       =\frac{-2-3+12+24}{2}
       : stationary points are (2,2) and (-1, \frac{31}{2})
       Nature
       \frac{d^2y}{dx^2} \downarrow_{x=2} = 6(2) - 3 = 9 \succ 0 \to \min
       \frac{d^2y}{dx^2} \downarrow_{x=1} = 6(-1) - 3 = -9 < 0 \rightarrow \max
       (2,2) is a minima and (-1,\frac{31}{2}) is a maxima
       \frac{dy}{dx} = 3 + 9x
       \int dy = \int (3 + 9x) dx
       y = 3x + \frac{9x^2}{2} + C
       15 = 3(2) + \frac{9}{2}(2)^2 + C
       15 = 6 + 18 + C
       15 = 24 + C
       C = -9
       \therefore 2y = 6x + 9x^2 - 9 \text{ or } y = 3x + \frac{9}{2}x^2 - 9
13.
```

Ages	f	X	fx	cf	Class boundaries		
16-20	6	18	108	6	15.5 – 20.5		
21-25	12	23	276	18	20.5 – 25.5		
26-30	7	28	196	25	25.5 – 30.5		
31-35	5	33	165	30	30.5 – 35.5		
36-40	6	38	228	36	35.5 – 40.5		
	$\sum f = 36$		$\sum fx = 973$				
$e(i) mean = \frac{973}{36}$ $= 27.0278$	$= \frac{\sum_{f} f}{\sum_{f} f}$ years(4dp)						
= 20.5 +	$Lot\left(\frac{d_1}{d_1+d_2}\right)$ $\frac{6}{6+5}.5$ $years(4dp)$	$\int C$					
		en who ma	rry at an age o	f 30 and a	above		
$=\frac{40.24.4}{40}$			iry are air age c	2 0 0 01101			
$= \frac{15.6}{40} \times 10$ $= 39\%$							
	R ->	9m51 →50N					
Using F=ma $50-F$ ma		(i)				
$F_{\text{max}} = 50$,				
	v 1	الا حسيت				1	

14.

$U = 0ms^{-1}$	
$V = 10ms^{-1}$	
workdone = 50	
t = ?	
S = 100m	
Fxd = 50	
100F = 50	
$F = \frac{5}{10} = \frac{1}{2}$	
$Ma = \frac{1}{2}$	
$a = \frac{1}{2} \div \frac{1}{5}$	
2 5	
$a = \frac{1}{2} \times \frac{5}{1}$	
$a = 2.5ms^{-1}$	
Using $V = u + at$	
10 = 0 + 2.5t	
$t = \frac{10}{2.5} = 4\sec onds$	
:. It takes 4seconds to move a distance of 100m	