CHEMISTRY QUESTIONS Answer all questions

1.State what is observed, name the products and write ionic equations for the reactions that take place when
a) sodium hydroxide solution is added until in excess to solutions of
i) lead(II) nitrate
ii) zinc sulphate
iii) aluminium chloride
iv) copper(II) nitrate
b) ammonia solution is added until in excess to solutions of
i) copper(II)sulphate
ii) zinc chloride
iii) aluminium sulphate
iv) lead(II) chloride
c) concentrated hydrochloric acid is added until in excess to solutions of
i) lead(II) nitrate
ii) copper(II) sulphate
iii) silver nitrate
d) potassium iodide solution is added to solutions of
i) lead(II) nitrate
ii) silver nitrate
iii) copper(II) sulphate
2.a) i)Explain what is meant by structural isomerism
ii) state the 3 main types of structural isomerism
iii) differentiate between the 3 types of structural isomerism.use examples to illustrate your answer
c) Write the structural formulae and IUPAC names of compounds with the following formulae
i) $\mathrm{C}_{4} \mathrm{H}_{8}$
ii) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
iii) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$
3. a) i)Define a primary standard
ii)state 4 characteristics of a primary standard
iii) Explain why sodium hydroxide and hydrochloric acid are not primary standards
c) Write the formula and name of one compound that is used to standardise
i) acids
ii) alkalis
d) Calculate the mass of ethanedioic acid(oxalic acid) crystals $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ required to prepare 250 cm 3 of a 0.05 M solution.
e) $20 \mathrm{~cm}^{3}$ of a solution containing 7.6 g of a monobasic acid $\mathrm{XCH}_{2} \mathrm{COOH}$ per litre of solution required $19.4 \mathrm{~cm}^{3}$ of 0.1 M sodium hydroxide for complete neutralisation.Calculate the
i) molarity of the acid
ii) atomic mass of X
e) Lemon juice contains citric acid which is tribasic $\left(\mathrm{H}_{3} \mathrm{Y}\right) .25 \mathrm{~cm}^{3}$ of lemon juice was diluted to $250 \mathrm{~cm}^{3} .25 \mathrm{~cm}^{3}$ of the solution was neutralised by $15 \mathrm{~cm}^{3}$ of 0.1 M sodium hydroxide. Calclate the
i) concentration of the diluted solution of lemon juice
ii)concentration of the original lemon juice
iii) percentage by mass of citric acid in lemon juice (molecular formula of citric acid is $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$
4. a) Define an ideal gas
b) Draw a sketch graph to show how pressure varies with volume for
i) an ideal gas
ii) a non ideal gas
c) explain why carbon dioxide deviates from ideal gas behaviour more than ammonia
d) 0.096 g of a liquid hydrocarbon was vapourised. it occupied 29.8 cm 3 at 18 oC and $750 \mathrm{~mm} . \mathrm{Hg}$. On analysis the liquid was found to contain 92.3% of carbon. calculate the
i) relative molecular mass of the hydrocarbon.
ii)empirical formula of the hydrocarbon
e)i)determine the molecular formula of the hydrocarbon
ii) write the structural formula and name of the hydrocarbon

