\qquad

P525/3
Chemistry
Paper 3
$31 / 4$ hours

INTERNAL MOCK EXAMINATIONS 2011 P525/3 CHEMISTRY

PAPER 3
$31 / 4$ hours

Instructions to Candidates

Answer all questions
Record your answers in the spaces provided only
Candidates are not allowed to start work with the apparatus for the first $\mathbf{1 5}$ minutes
This is time is to enable candidates to read the question paper and make sure they have all the apparatus and chemicals they may need.

1. You are provided with the following:

FA1; which is Oxalic acid solution.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
FA2; which is 0.02 M potassium Manganate (VII) solution.
Solid Q; which is a sample of pyrolusite,
Impure manganese (IV) oxide , MnO_{2}.
1M sulphuric acid

You are required to determine the ;
(a) Molar concentration of FA1
(b) Percentage of Manganese (IV) oxide, MnO_{2} in the pyrolusite.

Theory:

Pyrolusite is an Impure form of Manganese (IV) oxide. The Manganese (IV) oxide reacts with acidified oxalate as follows:
$\mathrm{MnO}_{2(\mathrm{~s})}+\mathrm{C}_{2} \mathrm{O}^{2-}{ }_{4(\mathrm{aq})}+4 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \longrightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Oxalate ions react with acidified potassium permanganate as follows;
$2 \mathrm{MnO}^{-}{ }_{4(\mathrm{aq})}+5 \mathrm{C}_{2} \mathrm{O}^{2-}{ }_{4(\mathrm{aq})}+16 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \longrightarrow 2 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+10 \mathrm{CO}_{2(\mathrm{~g})}+8 \mathrm{H}_{2} \mathrm{O}_{(1)}$

Procedure

PART A

a) By means of a measuring Cylinder, measure $100 \mathrm{~cm}^{3}$ of FA1 and transfer it into a $250 \mathrm{~cm}^{3}$ volumetric flask. Then add distilled water and make up to the mark. Label resultant solution FA3 .
b) Pipette $25 \mathrm{~cm}^{3}$ of FA3 into a clean conical flask followed by $20 \mathrm{~cm}^{3}$ of 1 M sulphuric acid and heat the mixture to about $70^{\circ} \mathrm{C}$. Titrate the hot solution immediately with FA2 from the burette. Repeat the procedure 2-3 times to obtain consistent readings. Record your results in the table below.

Results
Volume of pipette used \qquad . cm^{3})

Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of FA2 used $\left(\mathrm{cm}^{3}\right)$			

Volumes of FA2 used to calculate average
Volume; \qquad (cm^{3})

Questions

a) Calculate the;
i) Moles of MnO_{4}^{-}in FA2 that reacted
\qquad
\qquad
\qquad
\qquad
\qquad
ii) Moles of $\mathrm{C}_{2} \mathrm{O}^{2-}{ }_{4}$ in FA3 that reacted.
\qquad
\qquad
\qquad
\qquad
\qquad

iii) Molar concentration of $\mathrm{C}_{2} \mathrm{O}^{2-}{ }_{4}$ in FA1

\qquad
\qquad
\qquad
\qquad
\qquad

PART B

d) Weigh accurately 1.2 g of Q and transfer it into a conical flask. Add to it about $100 \mathrm{~cm}^{3}$ of FA1 followed by about $20 \mathrm{~cm}^{3}$ of 1 M sulphuric acid. Boil the mixture gently for about 4-5 minutes (with a glass funnel in the neck of the flask) until the remaining solid particles become white. Cool the mixture and transfer it into a $250 \mathrm{~cm}^{3}$ volumetric flask and then make up to the mark with distilled water. Label the resultant solution FA4.
e) Pipette $25 \mathrm{~cm}^{3}$ of FA4 into a clean conical flask, then add $20 \mathrm{~cm}^{3}$ of 1 M sulphuric acid and heat the mixture to about $70^{\circ} \mathrm{C}$. Titrate the hot solution

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211 immediately with FA2 from the burette. Repeat the procedure 2-3 times to obtain consistent readings. Record your results in the table below.

Mass of weighing vessel +Q g

Mass of weighing vessel aloneg
Mass of Q alone .. g
Volume of pipette................................... $\left(\mathrm{cm}^{3}\right)$

Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of FA2 used $\left(\mathrm{cm}^{3}\right)$			

Volumes of FA2 used for calculating

 average $\qquad$$\qquad$
Average of FA2 $\left(\mathrm{cm}^{3}\right)$

QUESTIONS

f) Calculate the number of moles of ;
i) FA2 that reacted.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) $\quad \mathrm{C}_{2} \mathrm{O}^{2-}{ }_{4}$ that reacted with FA2.
\qquad
\qquad
\qquad
\qquad
\qquad
iii) $\quad \mathrm{C}_{2} \mathrm{O}^{2-}{ }_{4}$ that reacted with MnO_{2}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
iv) MnO_{2} that reacted with $\mathrm{C}_{2} \mathrm{O}^{2-}{ }_{4}$ ions.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
g) Determine the percentage of MnO_{2} in the pyrolusite.
\qquad
2. You are provided with substance T which contains two cations and two anions. You are required to identify the cations and anions in T. Carry out

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211 the tests below and record your observations and deductions in the table below. Where a gas is evolved, it should be identified.

TESTS	OBSERVATIONS	DEDUCTIONS
a) Heat a spatula endful of T in a hand glass test tube first gently and then more strongly until there is no further change.		
b) Put three spatula endfuls of T in a testtube . Add about		
3cm ${ }^{3}$ of water and shake		
vigorously . Then add dilute		
sodium hydroxide solution		
dropwise until in excess and		
filter. Keep both filtrate and		
residue.		
c) To the filtrate , add dilute		
nitric acid dropwise until the		
solution just becomes acidic.		
Then divide the resultant		
solution into seven parts.		
(i) To the first part of the solution , add dilute sodium hydroxide solution drop-wise until in excess.		
ii) To the second part of the		

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

ammonia dropwise until in excess.		
iii) Use the third part of solution, to carry out a test of your own choice to confirm one of the cations in T.		
iv) To the fourth part of the solution, add about 3 -4 drops of lead (II) nitrate		
solution and warm.		
v) To the fifth part of the solution, carry out a test of your own choice to confirm one of the anions in T.		
vi) To the sixth part of the		
solution , add 5 drops of		
neutral Iron (III) chloride		
solution and heat gently to		
boiling.		
vii) To the seventh part of the solution , carry out a test of sour own to confirm the		
yortions. second anion in T.		
d) To the residue , add dilute portion of the hydrochloric acid until there sodium is no further change. Divide		

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

hydroxide drop-wise until in excess.		
ii) To the second portion of the solution, add dilute ammonia solution dropwise until in excess.		
iii) To the third part of the solution , add 2-3 drops of dilute sulphuric acid.		
iv) To the fourth part of the solution , add 2 -3 drops of potassium chromate (VI) and then add dilute sodium hydroxide solution drop wise		
until in excess and allow		
mixture to stand.		

d) Identify the ;
(i) Cations in T \qquad and.
(ii) Anions in T .and.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
3. You are provided with an organic substance W. You are required to determine the nature of the substance. Record your observations and deductions in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
a) Burn a spatula endful of W on a porcelain dish.		
b) To about $0.5 \mathrm{~cm}^{3}$ of W, add 3-4 drops of neutral Iron (III) Chloride solution and heat.		
c) To about $0.5 \mathrm{~cm}^{3}$ of W, add 3-4 drops of Brady's reagent.		
d) To about $3 \mathrm{~cm}^{3}$ of W, add $3 \mathrm{~cm}^{3}$ of distilled water and shake. Then test with litmus paper. Divide the resultant mixture into three parts.		
i) To the first part, add $1 \mathrm{~cm}^{3}$ of propan -1- ol followed by 2-3 drops of concentrated sulphuric acid and heat . Cool and pour the contents on Petri dish.		
ii) To the second part, add 3-5 drops of acidified potassium dichromate and heat.		
iii) To $2 \mathrm{~cm}^{3}$ of silver nitrate solution, add 2 drops of dilute sodium hydroxide. Then add ammonia solution dropwise until the precipitate just dissolves.Add $2 \mathrm{~cm}^{3}$ of the third part and warm.		

From your results above, deduce the nature of compound W.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

