END OF APRIL TEST 2019

SENIOR FIVE

APPLIED MATHEMATICS

P425/2

Duration: $11 / 2$ hours

Attempt all questions

1. (a) For a given set of 9 values, $\sum(x-\bar{x})^{2}=60$ and $\sum x^{2}=285$. Find the mean of the values.
(b) Below are times (minutes) taken by 150 buses to travel from Kampala to Jinja over a certain period of time.

Time (Minutes)	Number of buses
$80-84$	10
$85-89$	25
$90-94$	60
$95-99$	100
$100-104$	128
$105-109$	143
$110-114$	147
$115-119$	149
$120-124$	150

Construct a frequency distribution table and use it to calculate the;
(i) Mean time,
(ii) Modal time,
(iii) Standard deviation of the distribution
(09 marks)
2. (a) A and B are events such that B is twice as likely to occur as A. Given that $P(A \cap B)=0.2$ and $P\left(A^{I} \cap B^{I}\right)=0.3$. Find $P\left(A \cap B^{I}\right)$. (04 marks)
(b) The probability that a star player of a football team will play in any game is 0.8 . The probability that the team wins a game when that star player is in the team is 0.75 , otherwise it is 0.5 . Find the probability that the team will win the game.
(c) Events X and Y are such that $\mathrm{P}(\mathrm{X})=0.75 \mathrm{P}(\mathrm{Y}), \mathrm{P}(\mathrm{X} \mathrm{U} \mathrm{Y})=0.7$ and $P(X / Y)=\frac{7}{12}$. Calculate;
(i) $\mathrm{P}(\mathrm{Y})$,
(ii) $P(X \cap Y)$.
(04 marks)
3. (a) The resultant of vectors $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} is $(15 \mathbf{i}-7 \mathbf{j})$. Given that; $\mathbf{F}_{1}=-4 \mathbf{i}$ $+(a-2 b) j, F_{2}=(3 a-b) i+5 j$ and $F_{3}=7 i-j$. Find the;
(i) Values of a and b,
(ii) Magnitude and direction of F_{1}.
(b) Find the angle between vectors of magnitude 7 units and 4 units if their resultant is of magnitudes 9 units. Hence find the angle the resultant makes with the smaller vector.

(12 marks)

4. The brakes of a train, which is travelling at $108 \mathrm{kmh}^{-1}$, are applied as the train passes point A. The brakes produce a constant retardation of magnitude $3 \beta \mathrm{~ms}^{-2}$ until the velocity of the train is reduced to $10 \mathrm{~ms}^{-1}$. The train travels at this velocity for a certain distance and is then uniformly accelerated at $12960 \beta \mathrm{kmh}^{-2}$ until it again reaches a velocity of $108 \mathrm{kmh}^{-1}$ as it passes point B . The time taken by the train in travelling from A to B , a distance of 4 km , is 4 minutes.
(a) Sketch a velocity - time graph for this motion.
(b) Determine the;
(i) Value of β,
(ii) Distance travelled at $10 \mathrm{~ms}^{-1}$,
(iii) Average speed during the retardation stage of motion.
(14 marks)

END

