END OF MARCH TEST 2019
 SENIOR FIVE
 APPLIED MATHEMATICS
 P425/2

Duration: 1.5 hours

Attempt all questions

1. (a) These are results of $S .5 / 2019$ students obtained from a test marked out of 100 .
52, 61, 78, 49, 47, 79, 54, 58, 62, 73 and 72

Find the:
(i) Median mark.
(02 marks)
(ii) Semi - inter quartile range.
(iii) Range of the distribution.
(b) For a particular set of data, $\mathrm{n}=100, \sum(x-50)=123.5$ and $\sum(x-50)^{2}=238.4$. Find the:
(i) Mean of x.
(ii) Standard deviation of the distribution.
(05 marks)
2. (a) A cyclist starting from a point A travels 0.2 km due North to a point B at a constant speed of $5 \mathrm{~ms}^{-1}$. He rests at B for half a minute and then travels 300 m due south to a point C at a constant speed of $36 \mathrm{kmh}^{-1}$.
(i) Find the average speed for the whole journey.
(ii) Determine also the average velocity for the whole journey.
(iii) Sketch a displacement - time graph for the cyclist's journey.
(b) Three points A, B and C on a motor racing track are such that B is 1 km beyond A and C is 2 km beyond B. A car moving with uniform acceleration takes 1 minute to travel from A to B and 1.5 minutes to travel from B to C. Find its uniform acceleration and the speed it has at C. (05 marks)
3. (a) Tests are carried out on three machines A, B and C to assess the likelihood that each machine will produce a faulty component. The results are summarized in the table below.

MACHINE	FAULTY	NOT FAULTY
A	30	120
B	20	80
C	50	150

A component is chosen at random from those tested. Find the probability that the component chosen is;
(i) from Machine A,
(ii) a faulty component from Machine B,
(iii) not faulty or is from Machine C
(b) Two fair cubical dice are thrown simultaneously and the scores multiplied. If P (n) denotes the probability that the number n will be obtained;
(i) Calculate P (25), P (4) and P (14),
(ii) If $\mathrm{P}(\mathrm{t})=\frac{1}{9}$, find the possible values of t .
4. (a) A force vector $\mathbf{F}=\mathrm{ai}+12 \mathbf{j}$ has a magnitude of 13 units. Find the two possible values of a and the corresponding inclination of F to the x - axis.
(b) Express the following vectors in the form $x i+y \mathbf{j}$, given their magnitudes and directions as bearings.
(08 marks)

VECTOR	MAGNITUDE (UNITS)	DIRECTION (BEARINGS)
\mathbf{d}	7	060°
\mathbf{e}	14	$\mathrm{~N} 45^{\circ} \mathrm{W}$
\mathbf{f}	18	270°
\mathbf{H}	6	S35 ${ }^{\circ} \mathrm{W}$

